NF‐κB is a pleiotropic transcription factor involved in multiple processes, including inflammation and oncogenesis. We have previously reported that COMMD1 represses κB‐dependent transcription by negatively regulating NF‐κB–chromatin interactions. Recently, ubiquitination of NF‐κB subunits has been similarly implicated in the control of NF‐κB recruitment to chromatin. We report here that COMMD1 accelerates the ubiquitination and degradation of NF‐κB subunits through its interaction with a multimeric ubiquitin ligase containing Elongins B and C, Cul2 and SOCS1 (ECSSOCS1). COMMD1‐deficient cells demonstrate stabilization of RelA, greater nuclear accumulation of RelA after TNF stimulation, de‐repression of several κB‐responsive genes, and enhanced NF‐κB‐mediated cellular responses. COMMD1 binds to Cul2 in a stimulus‐dependent manner and serves to facilitate substrate binding to the ligase by stabilizing the interaction between SOCS1 and RelA. Our data uncover that ubiquitination and degradation of NF‐κB subunits by this COMMD1‐containing ubiquitin ligase is a novel and critical mechanism of regulation of NF‐κB‐mediated transcription.
Nanoscale room-temperature ferroelectricity is ideal for developing advanced non-volatile high-density memories. However, reaching the thin film limit in conventional ferroelectrics is a long-standing challenge due to the presence of the critical thickness effect. van der Waals materials, thanks to their stable layered structure, saturated interfacial bonding and weak interlayer couplings, are promising for exploring ultra-thin two-dimensional (2D) ferroelectrics and device applications. Here, we demonstrate a switchable room-temperature ferroelectric diode built upon a 2D ferroelectric α-In2Se3 layer as thin as 5 nm in the form of a graphene/α-In2Se3 heterojunction. The intrinsic out-of-plane ferroelectricity of the α-In2Se3 thin layers is evidenced by the observation of reversible spontaneous electric polarization with a relatively low coercive electric field of ∼2 × 105 V cm-1 and a typical ferroelectric domain size of around tens μm2. Owing to the out-of-plane ferroelectricity of the α-In2Se3 layer, the Schottky barrier at the graphene/α-In2Se3 interface can be effectively tuned by switching the electric polarization with an applied voltage, leading to a pronounced switchable double diode effect with an on/off ratio of ∼105. Our results offer a new way for developing novel nanoelectronic devices based on 2D ferroelectrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.