In this work, explicitly pyro-catalytic performance is observed in sol-gel-synthesized ferroelectric Bi0.5Na0.5TiO3 lead-free nanomaterials, and its application for dye wastewater purification is also actualized under temperature fluctuations varying from 23 °C to 63 °C. The decomposition ratios of the pyro-catalytic Bi0.5Na0.5TiO3 nanomaterials on Rhodamine B, methyl blue and methyl orange can reach 96.75%, 98.35% and 19.97%, respectively. In the pyro-catalytic process, the probed active species such as hydroxyl radicals, superoxide radicals and holes play an extremely important role in decomposing dye molecules. The ferroelectric Bi0.5Na0.5TiO3 lead-free nanomaterials will have an excellent prospect for dye wastewater purification due to its explicit pyro-catalysis.
Pyroelectric materials have the ability to convert the environmental cold–hot thermal energy such as day–night temperature alternation into electrical energy. The novel pyro-catalysis technology can be designed and realized on the basis of the product coupling between pyroelectric and electrochemical redox effects, which is helpful for the actual dye decomposition. The organic two-dimensional (2D) graphic carbon nitride (g-C3N4), as an analogue of graphite, has attracted considerable interest in the field of material science; however, its pyroelectric effect has rarely been reported. In this work, the remarkable pyro-catalytic performance was achieved in the 2D organic g-C3N4 nanosheet catalyst materials under the continuous room-temperature cold–hot thermal cycling excitation from 25 °C to 60 °C. The pyro-catalytic RhB dye decoloration efficiency of the 2D organic g-C3N4 can reach ~92.6%. Active species such as the superoxide radicals and hydroxyl radicals are observed as the intermediate products in the pyro-catalysis process of the 2D organic g-C3N4 nanosheets. The pyro-catalysis of the 2D organic g-C3N4 nanosheets provides efficient technology for wastewater treatment applications, utilizing the ambient cold–hot alternation temperature variations in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.