Generic object detection is confronted by dealing with different degrees of variations in distinct object classes with tractable computations, which demands for descriptive and flexible object representations that are also efficient to evaluate for many locations. In view of this, we propose to model an object class by a cascaded boosting classifier which integrates various types of features from competing local regions, named as regionlets. A regionlet is a base feature extraction region defined proportionally to a detection window at an arbitrary resolution (i.e. size and aspect ratio). These regionlets are organized in small groups with stable relative positions to delineate fine-grained spatial layouts inside objects. Their features are aggregated to a one-dimensional feature within one group so as to tolerate deformations. Then we evaluate the object bounding box proposal in selective search from segmentation cues, limiting the evaluation locations to thousands. Our approach significantly outperforms the state-of-the-art on popular multi-class detection benchmark datasets with a single method, without any contexts. It achieves the detection mean average precision of 41.7% on the PASCAL VOC 2007 dataset and 39.7% on the VOC 2010 for 20 object categories. It achieves 14.7% mean average precision on the ImageNet dataset for 200 object categories, outperforming the latest deformable part-based model (DPM) by 4.7%.
Generic object detection is confronted by dealing with different degrees of variations, caused by viewpoints or deformations in distinct object classes, with tractable computations. This demands for descriptive and flexible object representations which can be efficiently evaluated in many locations. We propose to model an object class with a cascaded boosting classifier which integrates various types of features from competing local regions, each of which may consist of a group of subregions, named as regionlets. A regionlet is a base feature extraction region defined proportionally to a detection window at an arbitrary resolution (i.e., size and aspect ratio). These regionlets are organized in small groups with stable relative positions to be descriptive to delineate fine-grained spatial layouts inside objects. Their features are aggregated into a one-dimensional feature within one group so as to be flexible to tolerate deformations. The most discriminative regionlets for each object class are selected through a boosting learning procedure. Our regionlet approach achieves very competitive performance on popular multi-class detection benchmark datasets with a single method, without any context. It achieves a detection mean average precision of 41.7 percent on the PASCAL VOC 2007 dataset, and 39.7 percent on the VOC 2010 for 20 object categories. We further develop support pixel integral images to efficiently augment regionlet features with the responses learned by deep convolutional neural networks. Our regionlet based method won second place in the ImageNet Large Scale Visual Object Recognition Challenge (ILSVRC 2013).
We propose a novel recurrent encoder-decoder network model for real-time video-based face alignment. Our proposed model predicts 2D facial point maps regularized by a regression loss, while uniquely exploiting recurrent learning at both spatial and temporal dimensions. At the spatial level, we add a feedback loop connection between the combined output response map and the input, in order to enable iterative coarse-to-fine face alignment using a single network model. At the temporal level, we first decouple the features in the bottleneck of the network into temporalvariant factors, such as pose and expression, and temporalinvariant factors, such as identity information. Temporal recurrent learning is then applied to the decoupled temporalvariant features, yielding better generalization and significantly more accurate results at test time. We perform a comprehensive experimental analysis, showing the importance of each component of our proposed model, as well as superior results over the state-of-the-art in standard datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.