While underwater acoustic (UWA) communication offers a practical way to establish a wireless link with underwater vehicles, designing a UWA communication system onboard a small autonomous underwater vehicle (AUV) still poses significant challenges. As the adoption of the low-complexity, robust noncoherent communication technology is limited by low bandwidth efficiency and a low data rate, coherent UWA communication requires Doppler mitigation and channel equalization measures to achieve a relatively high data rate in a moving state. Due to the strict constraints of a small-scale AUV in terms of resources and energy consumption, it is not appropriate to use high-complexity Doppler/multipath compensation technology from the prospect of system implementation. In this paper, an efficient and low-complexity UWA differential binary phase-shift keying (DBPSK) system onboard a small AUV is proposed by simplifying the Doppler and multipath compensation. Specifically, for Doppler, the delay of the adjacent DBPSK symbols is calculated according to the Doppler estimate to facilitate delay-tuning Doppler correction. For multipath, low-complexity LMS channel equalization is incorporated with error correction coding to enable multipath mitigation. With a simple structure and low computational complexity, the proposed scheme facilitates the practical hardware implementation and system integration in the small AUV platform. The numerical simulations are conducted to assess the validity of the proposed scheme under different channel conditions and the effectiveness of the proposed scheme is further verified by two UWA communication field tests, which are performed at a practical shallow water sea and lake, respectively.
Multiple-input–multiple-output (MIMO) communication systems utilize multiple transmitters to send different pieces of information in parallel. This offers a promising way to communicate at a high data rate over bandwidth-limited underwater acoustic channels. However, underwater acoustic MIMO communication not only suffers from serious inter-symbol interference, but also critical co-channel interference (CoI), both of which degrade the communication performance. In this paper, we propose a new framework for underwater acoustic MIMO communications. The proposed framework consists of a CoI-cancellation-based channel estimation method and channel-estimation-based decision feedback equalizer (CE-DFE) with CoI cancellation functionalities for underwater acoustic MIMO communication. We introduce a new channel estimation model that projects the received signal to a specific subspace where the interference is free; therefore, the CoI is cancelled. We also introduce a CE-DFE with CoI cancellation by appending some filters from traditional CE-DFE. In addition, the traditional direct adaptive decision feedback equalization (DA-DFE) method and the proposed method are compared in terms of communication performance and computational complexity. Finally, the sea trial experiment demonstrates the effectiveness and merits of the proposed method. The proposed method achieves a more than 1 dB of output SNR over traditional DA-DFE, and is less sensitive to parameters. The proposed method provides a new approach to the design of robust underwater acoustic MODEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.