We study the process e + e − → π + π − J/ψ at a center-of-mass energy of 4.260 GeV using a 525 pb −1 data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross section is measured to be (62.9 ± 1.9 ± 3.7) pb, consistent with the production of the Y (4260). We observe a structure at around 3.9 GeV/c 2 in the π ± J/ψ mass spectrum, which we refer to as the Zc(3900). If interpreted as a new particle, it is unusual in that it carries an electric charge and couples to charmonium. A fit to the π ± J/ψ invariant mass spectrum, neglecting interference, results in a mass of (3899.0 ± 3.6 ± 4.9) MeV/c 2 and a width 3 of (46 ± 10 ± 20) MeV. Its production ratio is measured to be R = σ(e + e − →π ± Zc(3900) ∓ →π + π − J/ψ)) σ(e + e − →π + π − J/ψ) = (21.5 ± 3.3 ± 7.5)%. In all measurements the first errors are statistical and the second are systematic. PACS numbers: 14.40.Rt, 14.40.Pq, 13.66.Bc Since its discovery in the initial-state-radiation (ISR) process e + e − → γ ISR π + π − J/ψ [1], and despite its subsequent observations [2][3][4][5], the nature of the Y (4260) state has remained a mystery. Unlike other charmonium states with the same quantum numbers and in the same mass region, such as the ψ (4040) A similar situation has recently become apparent in the bottomonium system above the BB threshold, where there are indications of anomalously large couplings between the Υ(5S) state (or perhaps an unconventional bottomonium state with similar mass, the Y b (10890)) and the π + π − Υ(1S, 2S, 3S) and π + π − h b (1P, 2P ) final states [14,15]. More surprisingly, substructure in these π + π − Υ(1S, 2S, 3S) and π + π − h b (1P, 2P ) decays indicates the possible existence of charged bottomoniumlike states [16], which must have at least four constituent quarks to have a non-zero electric charge, rather than the two in a conventional meson. By analogy, this suggests there may exist interesting substructure in the Y (4260) → π + π − J/ψ process in the charmonium region.In this Letter, we present a study of the process e + e − → π + π − J/ψ at a center-of-mass (CM) energy of √ s = (4.260± 0.001) GeV, which corresponds to the peak of the Y (4260) cross section. We observe a charged structure in the π ± J/ψ invariant mass spectrum, which we refer to as the Z c (3900). The analysis is performed with a 525 pb −1 data sample collected with the BESIII detector, which is described in detail in Ref. [17]. In the studies presented here, we rely only on charged particle tracking in the main drift chamber (MDC) and energy deposition in the electromagnetic calorimeter (EMC).The GEANT4-based Monte Carlo (MC) simulation software, which includes the geometric description of the BE-SIII detector and the detector response, is used to optimize the event selection criteria, determine the detection efficiency, and estimate backgrounds. For the signal process, we use a sample of e + e − → π + π − J/ψ MC events generated assuming the π + π − J/ψ is produced via Y (4260) decays, and using the...
A measurement is reported of the ratio of branching fractions R(J/ψ)=B(B_{c}^{+}→J/ψτ^{+}ν_{τ})/B(B_{c}^{+}→J/ψμ^{+}ν_{μ}), where the τ^{+} lepton is identified in the decay mode τ^{+}→μ^{+}ν_{μ}ν[over ¯]_{τ}. This analysis uses a sample of proton-proton collision data corresponding to 3.0 fb^{-1} of integrated luminosity recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. A signal is found for the decay B_{c}^{+}→J/ψτ^{+}ν_{τ} at a significance of 3 standard deviations corrected for systematic uncertainty, and the ratio of the branching fractions is measured to be R(J/ψ)=0.71±0.17(stat)±0.18(syst). This result lies within 2 standard deviations above the range of central values currently predicted by the standard model.
We report on a study of the process e+ e- → π± (DD*)∓ at sqrt[s] = 4.26 GeV using a 525 pb(-1) data sample collected with the BESIII detector at the BEPCII storage ring. A distinct charged structure is observed in the (DD*)∓ invariant mass distribution. When fitted to a mass-dependent-width Breit-Wigner line shape, the pole mass and width are determined to be Mpole = (3883.9±1.5(stat)±4.2(syst)) MeV/c2 and Γpole = (24.8±3.3(stat)±11.0(syst)) MeV. The mass and width of the structure, which we refer to as Zc(3885), are 2σ and 1σ, respectively, below those of the Zc(3900) → π± J/ψ peak observed by BESIII and Belle in π+ π- J/ψ final states produced at the same center-of-mass energy. The angular distribution of the πZc(3885) system favors a JP = 1+ quantum number assignment for the structure and disfavors 1- or 0-. The Born cross section times the DD* branching fraction of the Zc(3885) is measured to be σ(e+ e- → π± Zc(3885)∓)×B(Zc(3885)∓ → (DD*)∓) = (83.5±6.6(stat)±22.0(syst)) pb. Assuming the Zc(3885) → DD* signal reported here and the Zc(3900) → πJ/ψ signal are from the same source, the partial width ratio (Γ(Zc(3885) → DD*)/Γ(Zc(3900) → πJ/ψ)) = 6.2±1.1(stat)±2.7(syst) is determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.