Current techniques in high-speed cell sorting are limited by the inherent coupling among three competing parameters of performance: throughput, purity, and rare cell recovery. Microfluidics provides an alternate strategy to decouple these parameters through the use of arrayed devices that operate in parallel. To efficiently isolate rare cells from complex mixtures, an electrokinetic sorting methodology was developed that exploits dielectrophoresis (DEP) in microfluidic channels. In this approach, the dielectrophoretic amplitude response of rare target cells is modulated by labeling cells with particles that differ in polarization response. Cell mixtures were interrogated in the DEP-activated cell sorter in a continuous-flow manner, wherein the electric fields were engineered to achieve efficient separation between the dielectrophoretically labeled and unlabeled cells. To demonstrate the efficiency of marker-specific cell separation, DEP-activated cell sorting (DACS) was applied for affinity-based enrichment of rare bacteria expressing a specific surface marker from an excess of nontarget bacteria that do not express this marker. Rare target cells were enriched by >200-fold in a single round of sorting at a single-channel throughput of 10,000 cells per second. DACS offers the potential for automated, surface marker-specific cell sorting in a disposable format that is capable of simultaneously achieving high throughput, purity, and rare cell recovery.cell sorting ͉ microfluidics C ell sorters are capable of separating a heterogeneous suspension of particles into purified fractions and thus have become an indispensable tool in biology and medicine. Emerging applications of cell sorting technology span a broad spectrum of pharmaceutical and biomedical fields that range from cancer diagnostics to cell-based therapies (1-3). The most widely used methodologies for cell separation are magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). MACS is a selection technique that is capable of capturing a large number of target cells in parallel (4); however, the purity and recovery in MACS typically have large variances (5). In contrast, FACS relies upon serially screening each cell, yielding high performance in cell recovery and purity (6). However, because of the serial nature of its operation, FACS allows for a comparatively low throughput, typically in the range between 10 4 and 10 5 cells per second (7). Regardless of the mechanism, the performance of cell separation is typically characterized by three metrics. ''Throughput'' gauges how many cell characterization and sorting operations can be executed per unit of time, ''purity'' is the fraction of the target cells in the collection vessel, and ''recovery'' is the fraction of the input target cells successfully sorted into the collection vessel. Demands placed on cell sorting technologies continue to increase, because cell sorting applications are expanding and biological questions are becoming more complex (7). For example, rare cell sort...
NZ2114, a new variant of plectasin, was overexpressed in Pichia pastoris X-33 via pPICZαA for the first time. The total secreted protein of fermentation supernatant reached 2,390 mg/l (29 °C) and 2,310 mg/l (25 °C), and the recombinant NZ2114 (rNZ2114) reached 860 mg/l (29 °C) and 1,309 mg/l (25 °C) at 96 h induction in a 5-l fermentor, respectively.The rNZ2114 was purified by cation exchange chromatography, and its yield was 583 mg/l with 94.8 % purity. The minimal inhibitory concentration (MIC) of rNZ2114 to four ATCC strains of Staphyloccocus aureus was evaluated from 0.028 to 0.90 μM. Meanwhile, it showed potent activity (0.11-0.90 μM) to 20 clinical isolates of MRSA. The rNZ2114 killed over 99.9 % of tested S. aureus (ATCC 25923 and ATCC 43300) in Mueller-Hinton medium within 6 h when treated with 4 × MIC. The postantibiotic effect of rNZ2114 to S. aureus ATCC 25923 and ATCC 43300 was 18.6-45.6 and 1.7-3.5 h under 1×, 2×, and 4× MIC, respectively. The fractional inhibitory concentration index (FICI) indicated a synergistic effect between rNZ2114 and kanamycin, streptomycin, and vancomycin against S. aureus ATCC 25923 (FICI = 0.125), and additivity between rNZ2114 and ampicillin, spectinomycin (FICI = 0.625), respectively. To S. aureus ATCC 43300 [methicillin-resistant S. aureus (MRSA)], rNZ2114 showed a synergistic effect (FICI = 0.125-0.3125) with kanamycin, ampicillin, streptomycin, and vancomycin, and antagonism with spectinomycin (FICI = 8.0625). The rNZ2114 caused only less than 0.1 % hemolytic activity in the concentration of 128 μg/ml, and showed a good thermostability from 20 to 80 °C. In addition, it exhibited the highest activity at pH 8.0. These results suggested that large-scale production of NZ2114 is feasible using the P. pastoris expression system, and it could be a new potential antimicrobial agent for the prevention and treatment of S. aureus especially for MRSA infections.
The capability to screen molecular libraries using disposable microfluidic devices provides the potential to simplify and automate reagent generation and to develop integrated bioanalytical systems for clinical diagnostics. Here, antibody epitopes were mapped using a disposable microfluidic device to screen a combinatorial peptide library composed of 5 x 108 members displayed on bacterial cells. On-chip library screening was achieved in a two-stage, continuous-flow microfluidic sorter that separates antibody-binding target cells captured on microspheres through dielectrophoretic funneling. The antibody fingerprints identified were comparable to those obtained using state-of-the-art commercial cell sorting instrumentation.
Parvoviruses are a diverse group of viruses that are capable of infecting a wide range of animals. In this study, we report the discovery of a novel parvovirus, tilapia parvovirus HMU-HKU, in the fecal samples of crocodiles and intestines of tilapia in Hainan Province, China. The novel parvovirus was firstly identified from crocodiles fed with tilapia using next-generation sequencing (NGS). Screening studies revealed that the prevalence of the novel parvovirus in crocodile feces samples fed on tilapia (75–86%) was apparently higher than that in crocodiles fed with chicken (4%). Further studies revealed that the prevalence of the novel parvovirus in tilapia feces samples collected at four areas in Hainan Province was between 40 and 90%. Four stains of the novel parvovirus were identified in this study based on sequence analyses of NS1 and all the four strains were found in tilapia in contrast only two of them were detected in crocodile feces. The nearly full-length genome sequence of the tilapia parvovirus HMU-HKU-1 was determined and showed less than 45.50 and 40.38% amino acid identity with other members of Parvoviridae in NS1 and VP1 genes, respectively. Phylogenetic analysis based on the complete helicase domain amino acid sequences showed that the tilapia parvovirus HMU-HKU-1 formed a relatively independent branch in the newly proposed genus Chaphamaparvovirus in the subfamily Hamaparvovirinae according to the ICTV’s most recent taxonomic criteria for Parvoviridae classification. Tilapia parvovirus HMU-HKU-1 likely represented a new species within the new genus Chaphamaparvovirus. The identification of tilapia parvovirus HMU-HKU provides further insight into the viral and genetic diversity of parvoviruses and its infections in tilapia populations need to be evaluated in terms of pathogenicity and production losses in tilapia farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.