BackgroundThe chemical compound and drug name recognition plays an important role in chemical text mining, and it is the basis for automatic relation extraction and event identification in chemical information processing. So a high-performance named entity recognition system for chemical compound and drug names is necessary.MethodsWe developed a CHEMDNER system based on mixed conditional random fields (CRF) with word clustering for chemical compound and drug name recognition. For the word clustering, we used Brown's hierarchical algorithm and Skip-gram model based on deep learning with massive PubMed articles including titles and abstracts.ResultsThis system achieved the highest F-score of 88.20% for the CDI task and the second highest F-score of 87.11% for the CEM task in BioCreative IV. The performance was further improved by multi-scale clustering based on deep learning, achieving the F-score of 88.71% for CDI and 88.06% for CEM.ConclusionsThe mixed CRF model represents both the internal complexity and external contexts of the entities, and the model is integrated with word clustering to capture domain knowledge with PubMed articles including titles and abstracts. The domain knowledge helps to ensure the performance of the entity recognition, even without fine-grained linguistic features and manually designed rules.
It is desirable to include more controllable attributes to enhance the diversity of generated responses in open-domain dialogue systems. However, existing methods can generate responses with only one controllable attribute or lack a flexible way to generate them with multiple controllable attributes. In this paper, we propose a Progressively trained Hierarchical Encoder-Decoder (PHED) to tackle this task. More specifically, PHED deploys Conditional Variational AutoEncoder (CVAE) on Transformer to include one aspect of attributes at one stage. A vital characteristic of the CVAE is to separate the latent variables at each stage into two types: a global variable capturing the common semantic features and a specific variable absorbing the attribute information at that stage. PHED then couples the CVAE latent variables with the Transformer encoder and is trained by minimizing a newly derived ELBO and controlled losses to produce the next stage's input and produce responses as required. Finally, we conduct extensive evaluations to show that PHED significantly outperforms the state-of-the-art neural generation models and produces more diverse responses as expected.
It is desirable to include more controllable attributes to enhance the diversity of generated responses in open-domain dialogue systems. However, existing methods can generate responses with only one controllable attribute or lack a flexible way to generate them with multiple controllable attributes. In this paper, we propose a Progressively trained Hierarchical Encoder-Decoder (PHED) to tackle this task. More specifically, PHED deploys Conditional Variational AutoEncoder (CVAE) on Transformer to include one aspect of attributes at one stage. A vital characteristic of the CVAE is to separate the latent variables at each stage into two types: a global variable capturing the common semantic features and a specific variable absorbing the attribute information at that stage. PHED then couples the CVAE latent variables with the Transformer encoder and is trained by minimizing a newly derived ELBO and controlled losses to produce the next stage's input and produce responses as required. Finally, we conduct extensive evaluations to show that PHED significantly outperforms the state-of-the-art neural generation models and produces more diverse responses as expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.