Increasing evidence indicates that long non-coding RNAs (lncRNAs) are associated with the progression of human cancers. However, the expression level and function of LINC01559 (long intergenic non-protein coding RNA 1559) in gastric cancer (GC) are rarely reported. Here we found that LINC01559 was upregulated in GC tissues based on GEPIA (Gene Expression Profiling Interactive Analysis) and TCGA (The Cancer Genome Atlas) databases. Also, LINC01559 was expressed at a lower level in GC cells than in mesenchymal stem cells (MSCs). In vitro experiments revealed that silencing LINC01559 remarkably hindered GC cell proliferation, migration and stemness. Then, we identified that LINC01559 was transmitted form MSCs to GC cells via the exosomes. Immunofluorescence staining and electron microscope validated the existence of exosomes in GC cells. Mechanistically, LINC01559 sponged miR-1343-3p to upregulate PGK1 (phosphoglycerate kinase 1), therefore activating PI3K/AKT pathway. Moreover, LINC01559 recruited EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) to PTEN (phosphatase and tensin homolog) promoter, inducing the methylation of PTEN promoter and finally resulting in PTEN repression. Of note, LINC01559 targeted both PGK1 and PTEN to promote GC progression by activating PI3K/AKT pathway. Taken together, our study demonstrated that LINC01559 accelerated GC progression via upregulating PGK1 and downregulating PTEN to trigger phosphatidylinositol 3-kinase/AKT serine/threonine kinase (PI3K/AKT) pathway, indicating LINC01559 as a potential biomarker for GC treatment.
Gastric cancer (GC), severely prevalent in East Asian regions, raises societal healthy concerns. 1,2 GLOBOCAN database has illustrated the high incidence and mortality of GC. 3-5 Besides, the survival of GC patients in 5 years is generally dreadful due to the lack of early typical symptoms, albeit with progresses in treatments. 6 It is difficult to improve the efficacy of GC treatment owing to intricate genetic and epigenetic alterations. Therefore, grasping the molecular mechanisms behind GC development is highly urgent for GC treatment. Circular RNAs (circRNAs) are formed upon special and selective shearing. Unlike linear RNAs, circRNAs basically originate from the exons or introns of their parental genes. 7,8 Typically, the abnormal expression of circRNAs is associated with tumour aggravation. Wang et al stated that circ_0091570 inhibits hepatocellular cancer cell growth. 09 Meanwhile, versatile physiological regulations of circRNAs on protein-coding genes are introduced as they can interact with certain RNAs and proteins. 10 Among these regulation modes, circRNAs acting as miRNA sponges for the protection of mRNA translation are well-reported in cancers including GC. 10-12 For instance, circ_006100 elevates GPRC5A expression
Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer. CircFUT8 has been shown to be upregulated in cancers, but its function in HCC remains unclear. Tumor-associated macrophages (TAMs) are one of the main components of the tumor microenvironment (TME), and M1 macrophages function as tumor suppressors in cancers. Exosomes exert an important role in the TME, and circRNAs can be modified by m6A. We investigated the function of circFUT8 in HCC and its interaction with exosomes, M1 macrophages, and m6A. Methods CircFUT8 expression was detected in HCC cells, and its effects on HCC cell growth were verified through functional assays. Mechanism assays including RNA pull down, RNA-binding protein immunoprecipitation (RIP), and luciferase reporter assays were undertaken to verify how circFUT8 may interact with miR-628-5p, and how these molecules may modulate HCC cell malignancy via interacting with exosomes and macrophages. Results CircFUT8 was upregulated in HCC cells and it accelerated HCC cell growth. Exosomes derived from M1 macrophages transferred miR-628-5p to HCC cells to inhibit human methyltransferase-like 14 (METTL14) expression. METTL14 promoted circFUT8 m6A modification and facilitated its nuclear export to the cytoplasm, where M1 macrophages regulated the circFUT8/miR-552-3p/CHMP4B pathway, thereby suppressing HCC progression. Conclusion M1 macrophages-derived exosomal miR-628-5p inhibited the m6A modification of circFUT8, inhibiting HCC development. Graphical Abstract
Background Hepatocellular carcinoma (HCC), as the most common type of liver cancer, is characterized by high recurrence and metastasis. Circular RNA (circRNA) circ_0036412 was selected for studying the underlying mechanisms of HCC. Methods Quantitative real time-polymerase chain reaction (qRT-PCR) and western blot analyzed gene and protein expression. Functional experiments evaluated HCC cell proliferation, apoptosis and cell cycle in vitro. In vivo experiments detected HCC carcinogenesis in vivo. Fluorescence in situ hybridization (FISH) assays evaluated the subcellular distribution. Luciferase reporter, Chromatin immunoprecipitation (ChIP), DNA pulldown, RNA-binding protein immunoprecipitation (RIP), and RNA pulldown assays detected the underlying mechanisms. Results Circ_0036412 is overexpressed in HCC cells and features circular structure. PRDM1 activates circ_0036412 transcription to regulate the proliferation and cell cycle of HCC cells in vitro. Circ_0036412 modulates Hedgehog pathway. GLI2 propels HCC growth in vivo. Circ_0036412 up-regulates GLI2 expression by competitively binding to miR-579-3p, thus promoting the proliferation and inhibiting cell cycle arrest of HCC cells. Circ_0036412 stabilizes GLI2 expression by recruiting ELAVL1. Circ_0036412 propels the proliferation and inhibits cell cycle arrest of HCC cells in vitro through Hedgehog pathway. Conclusions Circ_0036412 affects the proliferation and cell cycle of HCC via Hedgehog signaling pathway. It offers an insight into the targeted therapies of HCC. Graphical Abstract
Growing evidence has revealed that hypoxia is involved in multiple stages of cancer development. However, there are limited reports on the effects of long noncoding RNAs (lncRNAs) on hepatocellular carcinoma (HCC) progression under hypoxia. The main purposes of this study were to analyze the effect of the novel lncRNA DACT3-AS1 on metastasis in HCC and to elucidate the related molecular mechanism. Bioinformatics tools were employed. RT–qPCR or western blot assays were conducted to detect RNA or protein expression. Clinical samples and in vivo assays were utilized to reveal the role of DACT3-AS1 in HCC. Other mechanism and functional analyses were specifically designed and performed as well. Based on the collected data, this study revealed that HIF-1α transcriptionally activates DACT3-AS1 expression under hypoxia. DACT3-AS1 was verified to promote metastasis in HCC. Mechanistically, DACT3-AS1 promotes the interaction between HDAC2 and FOXA3 to stimulate FOXA3 deacetylation, which consequently downregulates the FOXA3 protein. Furthermore, FOXA3 serves as a transcription factor that can bind to the PKM2 promoter region, thus hindering PKM2 expression. To summarize, this study uncovered that HIF-1α-induced DACT3-AS1 promotes metastasis in HCC and can upregulate PKM2 via the HDAC2/FOXA3 pathway in HCC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.