Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Omega to 970 Omega at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria.
Two challenges for improving the performance of air cathode, single-chamber microbial fuel cells (MFCs) include increasing Coulombic efficiency (CE) and decreasing internal resistance. Nonbiodegradable glass fiber separators between the two electrodes were shown to increase power and CE, compared to cloth separators (J-cloth) that were degraded over time. MFC tests were conducted using glass fiber mats with thicknesses of 1.0 mm (GF1) or 0.4 mm (GF0.4), a cation exchange membrane (CEM), and a J-cloth (JC), using reactors with different configurations. Higher power densities were obtained with either GF1 (46 +/- 4 W/m(3)) or JC (46 +/- 1 W/m(3)) in MFCs with a 2 cm electrode spacing, when the separator was placed against the cathode (S-configuration), rather than MFCs with GF0.4 (36 +/- 1 W/m(3)) or CEM (14 +/- 1 W/m(3)). Power was increased to 70 +/- 2 W/m(3) by placing the electrodes on either side of the GF1 separator (single separator electrode assembly, SSEA) and further to 150 +/- 6 W/m(3) using two sets of electrodes spaced 2 cm apart (double separator electrode assembly, DSEA). Reducing the DSEA electrode spacing to 0.3 cm increased power to 696 +/- 26 W/m(3) as a result of a decrease in the ohmic resistance from 5.9 to 2.2 Omega. The main advantages of a GF1 separator compared to JC were an improvement in the CE from 40% to 81% (S-configuration), compared to only 20-40% for JC under similar conditions, and the fact that GF1 was not biodegradable. The high CE for the GF1 separator was attributed to a low oxygen mass transfer coefficient (k(O) = 5.0 x 10(-5) cm/s). The GF1 and JC materials differed in the amount of biomass that accumulated on the separator and its biodegradability, which affected long-term power production and oxygen transport. These results show that materials and mass transfer properties of separators are important factors for improving power densities, CE, and long-term performance of MFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.