The evaporation of aqueous suspensions of cellulose nanocrystals (CNCs) gives iridescent chiral nematic films with reflection colors at visible wavelengths. A key problem is controlling the chiral nematic pitch, P, and hence the reflection colors of CNC films. By adding D-(+)-glucose to the suspension, we show that the change in P during evaporation occurs in two distinct stages. The first stage is the decrease in P as the concentration of CNC in the chiral nematic suspension increases due to evaporation; the addition of glucose causes a decrease in P at this stage. In a second stage, a concentration of CNC is reached where the formation of ordered gels and glasses prevents further major changes in P. The addition of glucose lowers the CNC concentration at which this occurs, leading to an increase in P and hence an overall shift to the red end of the spectrum in the final film.
Since the discovery of Ti 3 C 2 T x in 2011, the family of two-dimensional transition metal carbides, carbonitrides, and nitrides (collectively known as MXenes) has quickly attracted the attention of those developing energy storage applications such as electrodes for supercapacitors with acidic aqueous electrolytes. The excellent performance of these MXenes is attributed to a pseudocapacitive energy storage mechanism, based on the nonrectangular shape of cyclic voltammetry curves and changes in the titanium oxidation state detected by in situ X-ray absorption spectroscopy. However, the pseudocapacitive mechanism is not well understood and no dimensional changes due to proton insertion have been reported. In this work, in situ X-ray diffraction and density functional theory are used to investigate the charge storage mechanism of Ti 3 C 2 T x in 1 m H 2 SO 4 . Results reveal that a 0.5 Å expansion and shrinkage of the c-lattice parameter of Ti 3 C 2 T x occur during cycling in a 0.9 V voltage window, showing that the charge storage mechanism is intercalation pseudocapacitance with implication for MXene use in energy storage and electrochemical actuators.
As a class of key building blocks in the chemical industry, aromatic compounds are mainly derived from the catalytic reforming of petroleum-based long chain hydrocarbons. The dehydroaromatization of methane can also be achieved by using zeolitic catalysts under relatively high temperature. Herein we demonstrate that Si-doped GaN nanowires (NWs) with a 97% rationally constructed m-plane can directly convert methane into benzene and molecular hydrogen under ultraviolet (UV) illumination at rt. Mechanistic studies suggest that the exposed m-plane of GaN exhibited particularly high activity toward methane C-H bond activation and the quantum efficiency increased linearly as a function of light intensity. The incorporation of a Si-donor or Mg-acceptor dopants into GaN also has a large influence on the photocatalytic performance.
Recently, a large family of 2D materials called MXenes have attracted much attention in the field of supercapacitors, thanks to the excellent performance demonstrated by Ti3C2 MXene-based electrodes. However, research on MXenes for supercapacitor applications has been primarily focused on Ti3C2, even though there are more than 20 other members of this large family of materials already available. Studies on other MXenes are emerging, with promising results already achieved by Ti2C, Mo2C, and Mo1.33C in aqueous electrolytes. Yet, many other MXenes remain unexplored in aqueous supercapacitor applications. In this work, we report on the electrochemical behavior of a vanadium carbide MXene, V2C, in three aqueous electrolytes. Excellent specific capacitances were achieved, specifically 487 F/g in 1 M H2SO4, 225 F/g in 1 M MgSO4, and 184 F/g in 1 M KOH, which are higher than previously reported values for few micrometer-thick delaminated MXene electrodes. This work shows the promise of V2C MXene for energy storage using aqueous electrolytes.
We describe a simple, metal-and oxidantfree photochemical strategy for the direct trifluoromethylation of unactivated arenes and heteroarenes under either ultraviolet or visible light irradiation. We demonstrated that photoexcited aliphatic ketones, such as acetone and diacetyl, can be used as promising low-cost radical initiators to generate CF 3 radicals from sodium triflinate efficiently. The broad utility of this strategy and its benefit to medicinal chemistry are demonstrated by the direct trifluoromethylation of unprotected bidentate chelating ligand, xanthine alkaloids, nucleosides, and related antiviral drug molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.