China has implemented a portfolio of large-scale forest conservation and restoration programs (FCRPs) to advance the sustainable management of forests. However, the contributions of these programs to forest recovery and land surface greening were generally evaluated on a local scale, which hindered the systematic planning of FCRPs. In this study, we analyzed the spatiotemporal patterns of tree cover change before and after the intensification of FCRPs using Mann-Kendall test and Theil-Sen's slope estimator. With the improved phenology-based residual trend analysis (P-RESTREND) method, we derived the spatiotemporal patterns of human-induced tree cover (TCH) change on the national scale. Then, we calculated effectiveness index of FCRPs at the provincial level, based on which the effectiveness levels for the 31 provinces of mainland China were classified. Our study showed that the area of forested lands with a significant greening trend was almost five times larger in the post-intensification phase (1999–2015) than in the pre-intensification phase of FCRPs (1982–1998). More than 29.9% of the forested lands were significantly improved in tree cover by human activities in the post-intensification phase. Provinces with high effectiveness level were generally distributed in humid areas, whereas the majority of provinces with low and moderate-low effectiveness levels were spread in arid and semi-arid regions. We concluded that the implementation of FCRPs had contributed greatly to the land surface greening in China. Moreover, the effectiveness of FCRPs in forest recovery was heterogeneous at the provincial level and was driven by multiple natural and socioeconomic factors.
Drought disasters jeopardize the production of vegetation and are expected to exert impacts on human well-being in the context of global climate change. However, spatiotemporal variations in drought characteristics (including the drought duration, intensity, and frequency), specifically for vegetation areas within a growing season, remain largely unknown. Here, we first constructed a normalized difference vegetation index to estimate the length of the growing season for each pixel (8 km) by four widely used phenology estimation methods; second, we analyzed the temporal and spatial patterns of climate factors and drought characteristics (in terms of the Standardized Precipitation Evapotranspiration Index (SPEI)), within a growing season over vegetation areas of the northern hemisphere before and after the critical time point of 1998, which was marked by the onset of a global warming hiatus. Finally, we extracted the highly drought-vulnerable areas of vegetation by examining the sensitivity of the gross primary production to the SPEI to explore the underlying effects of drought variation on vegetation. The results revealed, first, that significant (p < 0.05) increases in precipitation, temperature, and the SPEI (a wetting trend) occurred from 1982 to 2015. The growing season temperature increased even more statistically significant after 1998 than before. Second, the duration and frequency of droughts changed abruptly and decreased considerably from 1998 to 2015; and this wetting trend was located mainly in high-latitude areas. Third, at the biome level, the wetting areas occurred mainly in the tundra, boreal forest or taiga, and temperate coniferous forest biomes, whereas the highly drought-vulnerable areas were mainly located in the desert and xeric shrubland (43.5%) biomes. Our results highlight the fact that although the drought events within a growing season decreased significantly in the northern hemisphere from 1998 to 2015, the very existence of a mismatch between a reduction in drought areas and an increase in highly drought-vulnerable areas makes the impact of drought on vegetation nonnegligible. This work provides valuable information for designing coping measures to reduce the vegetative drought risk in the Northern Hemisphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.