Immunochromatographic assay (ICA) is widely applied in various fields. However, severe matrix interference and weak signal output present major challenges in achieving accurate and ultrasensitive detection in ICA. Here, a polydopamine (PDA)-mediated magnetic bimetallic nanozyme (Fe 3 O 4 @PDA@Pd/Pt) with peroxidase-like activity was synthesized and used as a probe in ICA. The magnetic property of Fe 3 O 4 @PDA@Pd/Pt enabled effective magnetic enrichment of targets, thereby reducing the matrix interference in the sample. PDA coating on the magnetic bimetallic nanozyme was employed as a mediator and a stabilizer. It improved the catalytic ability and stability of the magnetic bimetallic nanozyme by providing more coordination sites for Pd/Pt growth and functional groups (−NH and −OH). In addition, the Pd/Pt bimetallic synergistic effect could further enhance the catalytic ability of the nanozyme. A method was developed by integrating Fe 3 O 4 , PDA, and Pd/Pt into Fe 3 O 4 @PDA@Pd/Pt as a probe in ICA. With the proposed method, human chorionic gonadotropin and Escherichia coli O157:H7 were successfully detected to be as low as 0.0094 mIU/mL in human blood serum and 9 × 10 1 CFU/mL in the milk sample, respectively. This method may be readily adapted for accurate and ultrasensitive detection of other biomolecules in various fields.
GN/BT nanocomposites were fabricated via colloidal processing methods, and ceramics were sintered through two-step sintering methods. The microstructure and morphology were characterized by X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy. XRD analysis shows that all samples are perovskite phases, and the lattice parameters a and c almost decrease linearly with the increase of graphene nanosheets. The dielectric properties were tested by using precision impedance. The maximum dielectric constant at the Curie temperature for the nanocomposites with graphene addition of 3 wt % is about 16,000, almost 2 times more than that of pure BaTiO3 ceramics. The relaxation, band structure, density of states, and charge density distribution of GN/BT superlattices were calculated using first-principles calculations for the first time, and results showed the strong hybrid interactions between C 2p states and O 2p and Ti 3d orbitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.