Image segmentation is an important research in image processing and machine vision in which automated driving can be seen the main application scene of image segmentation algorithms. Due to the many constraints of power supply and communication in in-vehicle systems, the vast majority of current image segmentation algorithms are implemented based on the deep learning model. Despite the ultrahigh segmentation accuracy, the problem of mesh artifacts and segmentation being too severe is obvious, and the high cost, computational, and power consumption devices required are difficult to apply in real-world scenarios. It is the focus of this paper to construct a road scene segmentation model with simple structure and no need of large computing power under the premise of certain accuracy. In this paper, the ESPNet (Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation) model is introduced in detail. On this basis, an improved ESPNet model is proposed based on ESPNet. Firstly, the network structure of the ESPNet model is optimized, and then, the model is optimized by using a small amount of weakly labeled and unlabeled scene sample data. Finally, the new model is applied to video image segmentation based on dash cam. It is verified on Cityscape, PASCAL VOC 2012, and other datasets that the algorithm proposed in this paper is faster, and the amount of parameters required is less than 1% of other algorithms, so it is suitable for mobile terminals.
Image semantic segmentation as a kind of technology has been playing a crucial part in intelligent driving, medical image analysis, video surveillance, and AR. However, since the scene needs to infer more semantics from video and audio clips and the request for real-time performance becomes stricter, whetherthe single-label classification method that was usually used before or the regular manual labeling cannot meet this end. Given the excellent performance of deep learning algorithms in extensive applications, the image semantic segmentation algorithm based on deep learning framework has been brought under the spotlight of development. This paper attempts to improve the ESPNet (Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation) based on the multilabel classification method by the following steps. First, the standard convolution is replaced by applying Receptive Field in Deep Convolutional Neural Network in the convolution layer, to the extent that every pixel in the covered area would facilitate the ultimate feature response. Second, the ASPP (Atrous Spatial Pyramid Pooling) module is improved based on the atrous convolution, and the DB-ASPP (Delate Batch Normalization-ASPP) is proposed as a way to reducing gridding artifacts due to the multilayer atrous convolution, acquiring multiscale information, and integrating the feature information in relation to the image set. Finally, the proposed model and regular models are subject to extensive tests and comparisons on a plurality of multiple data sets. Results show that the proposed model demonstrates a good accuracy of segmentation, the smallest network parameter at 0.3 M and the fastest speed of segmentation at 25 FPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.