Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Infections caused by antibiotic-resistant bacteria are a rising public health threat and make the identification of new antibiotics a priority. From a cell-based screen for bactericidal compounds against Mycobacterium tuberculosis under nutrient-deprivation conditions we identified auranofin, an orally bioavailable FDA-approved antirheumatic drug, as having potent bactericidal activities against both replicating and nonreplicating M. tuberculosis. We also found that auranofin is active against other Gram-positive bacteria, including Bacillus subtilis and Enterococcus faecalis, and drug-sensitive and drug-resistant strains of Enterococcus faecium and Staphylococcus aureus. Our biochemical studies showed that auranofin inhibits the bacterial thioredoxin reductase, a protein essential in many Gram-positive bacteria for maintaining the thiol-redox balance and protecting against reactive oxidative species. Auranofin decreases the reducing capacity of target bacteria, thereby sensitizing them to oxidative stress. Finally, auranofin was efficacious in a murine model of methicillin-resistant S. aureus infection. These results suggest that the thioredoxin-mediated redox cascade of Gram-positive pathogens is a valid target for the development of antibacterial drugs, and that the existing clinical agent auranofin may be repurposed to aid in the treatment of several important antibiotic-resistant pathogens.auranofin | tuberculosis | MRSA | Gram-positive
Tyrosine phosphorylation is a common protein posttranslational modification, which plays a critical role in signal transduction and the regulation of many cellular processes. Using a pro-peptide strategy to increase cellular uptake of O-phosphotyrosine (pTyr) and its nonhydrolyzable analog 4-phosphomethyl-L-phenylalanine (Pmp), we identified an orthogonal aminoacyl-tRNA synthetase/tRNA pair that allows the site-specific incorporation of both pTyr and Pmp into recombinant proteins in response to the amber stop codon in Escherichia coli in good yields. The X-ray crystal structure of the synthetase reveals a reconfigured substrate binding site formed by non-conservative mutations and substantial local structural perturbations. We demonstrate the utility of this method by introducing Pmp into a putative phosphorylation site whose corresponding kinase is unknown and determined the affinities of the individual variants for the substrate 3BP2. In summary, this work provides a useful recombinant tool to dissect the biological functions of tyrosine phosphorylation at specific sites in the proteome.
Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. Here we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a library of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ∼9°C was identified. This result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.noncanonical amino acids | extended disulfide bonds | β-lactamase | thermostability | evolutionary advantage
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.