Medical image classification has been widely adopted in medical image analysis. However, due to the difficulty of collecting and labeling data in the medical area, medical image datasets are usually highly-imbalanced. To address this problem, previous works utilized class samples as prior for re-weighting or re-sampling but the feature representation is usually still not discriminative enough. In this paper, we adopt the contrastive learning to tackle the long-tailed medical imbalance problem. Specifically, we first propose the category prototype and adversarial proto-instance to generate representative contrastive pairs. Then, the prototype recalibration strategy is proposed to address the highly imbalanced data distribution. Finally, a unified proto-loss is designed to train our framework. The overall framework, namely as Prototypeaware Contrastive learning (ProCo), is unified as a single-stage pipeline in an end-to-end manner to alleviate the imbalanced problem in medical image classification, which is also a distinct progress than existing works as they follow the traditional two-stage pipeline. Extensive experiments on two highly-imbalanced medical image classification datasets demonstrate that our method outperforms the existing state-of-the-art methods by a large margin. Our source codes are available at https: //github.com/skyz215/ProCo.
Graph Neural Networks (GNNs) are widely used on a variety of graph-based machine learning tasks. For node-level tasks, GNNs have strong power to model the homophily property of graphs (i.e., connected nodes are more similar) while their ability to capture heterophily property is often doubtful. This is partially caused by the design of the feature transformation with the same kernel for the nodes in the same hop and the followed aggregation operator. One kernel cannot model the similarity and the dissimilarity (i.e., the positive and negative correlation) between node features simultaneously even though we use attention mechanisms like Graph Attention Network (GAT), since the weight calculated by attention is always a positive value. In this paper, we propose a novel GNN model based on a bi-kernel feature transformation and a selection gate. Two kernels capture homophily and heterophily information respectively, and the gate is introduced to select which kernel we should use for the given node pairs. We conduct extensive experiments on various datasets with different homophily-heterophily properties. The experimental results show consistent and significant improvements against state-of-the-art GNN methods.
CCS CONCEPTS• Computing methodologies → Neural networks; • Information systems → Social networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.