We attempted to investigate whether blood lactate is a useful biomarker for sepsis in a rat cecal ligation and puncture (CLP) model. Male Sprague-Dawley rats underwent approximately 75% cecum ligation and two punctures to induce high-grade sepsis. A lactate of 1.64 mmol/L (Youden score of 0.722) was selected as the best cutoff value to predict the onset of sepsis after CLP exposure; 46 of 50 rats who survived 24 hours after the CLP were divided into the L group (lactate < 1.64 mmol/L) and M group (lactate ≥ 1.64 mmol/L). In the M group, the animals had significantly higher murine sepsis scores and none survived 5 days post-CLP, and the rate of validated septic animals, serum procalcitonin, high mobility group box 1, blood urea nitrogen, alanine transaminase, cardiac troponin I, and the wet-to-dry weight ratio were significantly higher compared to the L group. Worsen PaO2/FiO2, microcirculations, and mean arterial pressure were observed in the M group. More severe damage in major organs was confirmed by histopathological scores in the M group compared with the L group. In conclusion, lactate ≥ 1.64 mmol/L might serve as a potential biomarker to identify the onset of sepsis in a rat CLP model.
Stroke is followed by an intricate immune interaction involving the engagement of multiple immune cells, including neutrophils. As one of the first responders recruited to the brain, the crucial roles of neutrophils in the ischemic brain damage are receiving increasing attention in recent years. Notably, neutrophils are not homogenous, and yet there is still a lack of full knowledge about the extent and impact of neutrophil heterogeneity. The biological understanding of the neutrophil response to both innate and pathological conditions is rapidly evolving as single-cell-RNA sequencing uncovers overall neutrophil profiling across maturation and differentiation contexts. In this review, we scrutinize the latest research that points to the multifaceted role of neutrophils in different conditions and summarize the regulatory signals that may determine neutrophil diversity. In addition, we list several potential targets or therapeutic strategies targeting neutrophils to limit brain damage following ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.