Protruding nanostructured surfaces have gained increasing interest due to their unique wetting behaviours and more recently their antimicrobial and osteogenic properties. Rapid development in nanofabrication techniques that offer high throughput and versatility on titanium substrate open up the possibility for better orthopaedic and dental implants that deter bacterial colonisation while promoting osteointegration. In this review we present a brief overview of current problems associated with bacterial infection of titanium implants and of efforts to fabricate titanium implants that have both bactericidal and osteogenic properties. All of the proposed mechano-bactericidal mechanisms of protruding nanostructured surfaces are then considered so as to explore the potential advantages and disadvantages of adopting such novel technologies for use in future implant applications. Different nanofabrication methods that can be utilised to fabricate such nanostructured surfaces on titanium substrate are briefly discussed.
Using conservation of resources theory as a framework, we proposed that in Chinese organizations, leader bottom-line mentality (BLM) would promote employee silence via emotional exhaustion. We also examined employee conscientiousness as a moderator of this indirect relationship. We
collected three-wave data from 325 employees in four Chinese companies. Results show that leader BLM was positively related to employee silence, and employee emotional exhaustion mediated the positive relationship between leader BLM and employee silence. In addition, employee conscientiousness
served as a first-stage moderator, such that the indirect relationship between leader BLM and employee silence via employee emotional exhaustion was significant and positive only when employee conscientiousness was low. Theoretical and practical implications are discussed.
Yes‐associated protein 1 (YAP1) transcriptional coactivator has recently been identified to regulate skeletal lineage cell differentiation and bone development. However, the role and molecular mechanisms of YAP1 in the regulation of osteoblastic differentiation remains to be elucidated. In this study, we demonstrated that YAP1 expression was increased during osteogenic differentiation of rat bone mesenchymal stem cells and MC3T3‐E1. YAP1 overexpression MC3T3‐E1 showed increased expression of osteogenesis markers, such as runt‐related transcription factor 2, osteocalcin, and osteopontin, as well as alkaline phosphatase and alizarin red staining. Conversely, YAP1 knockdown significantly suppressed MC3T3‐E1 osteoblastic differentiation. Mechanistically, we found that YAP1 overexpression upregulated the mRNA and protein expression of the inhibitor of differentiation/DNA binding 1 (ID1), which was contrary to the results of YAP1‐knockdown group. Moreover, the early osteogenic differentiation of MC3T3‐E1 cells was enhanced by ID1 overexpression. Furthermore, transient transfection with exogenous ID1 overexpression plasmid completely recaptured the decreased effects of YAP1 knockdown on MC3T3‐E1 cell differentiation. In addition, β‐catenin and AMP‐activated protein kinase signaling pathways participated in YAP1 regulation processes. Taken together, our study suggests that YAP1 is a crucial modulator of osteoblast differentiation in vitro, and provides insight into the mechanism by which YAP1 regulates osteoblast differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.