In subtropical to temperate regions, persimmon (Diospyros kaki Thunb.) is an economically important fruit crop cultivated for its edible fruits. Persimmons are distributed abundantly and widely in Zhejiang Province, representing a valuable resource for the breeding of new cultivars and studying the origin and evolution of persimmon. In this study, we elucidated the genetic structures and diversity patterns of 179 persimmon germplasms from 16 different ecologic populations in Zhejiang Province based on the analysis of 17 SSR markers. The results show that there was a medium degree of genetic diversity for persimmon found in Zhejiang Province. With the exception of the Tiantai Mountain and Xin’an River populations, we found extensive gene exchange had occurred among the other populations. The 179 D. kaki germplasms from the 16 populations could be separated into three distinct clusters (I, II, and III) with a higher mean pairwise genetic differentiation index (FST) (0.2714). Nearly all samples of Cluster-I were distributed inland. Cluster-II and Cluster-III contained samples that were widely distributed throughout Zhejiang Province including all samples from the coastal populations and the Northeast Plain populations. In addition, we performed association mapping with nine traits (fruit crude fiber content, fruit calcium content, fruit water content, fruit longitudinal diameter, fruit aspect ratio, seed width, seed length, leaf aspect ratio, and number of lateral veins) using these markers. This led to the identification of 13 significant marker–trait associations (MTAs; p < 0.00044, 0.1/228) using a general linear model, of which, six MTAs with a correlation coefficient (R2) >10% were consistently represented in the general linear model with p < 0.00044 in the two models. The genetic structures and diversity patterns of the persimmon germplasms revealed in this study will provide a reference for the efficient conservation and further utilization of persimmon germplasms. The MTAs identified in this study will be useful for future marker-assisted breeding of persimmon.
Chinese chestnut (Castanea mollissima Bl.) is one of the earliest domesticated and cultivated fruit trees, and it is widely distributed in China. Because of the high quality of its nuts and its high resistance to abiotic and biotic stresses, Chinese chestnut could be used to improve edible chestnut varieties worldwide. However, the unclear domestication history and highly complex genetic background of Chinese chestnut have prevented the efficiency of breeding efforts. To explore the genetic diversity and structure of Chinese chestnut populations and generate new insights that could aid chestnut breeding, heterozygosity statistics, molecular variance analysis, ADMIXTURE analysis, principal component analysis, and phylogenetic analysis were conducted to analyze single nucleotide polymorphism data from 185 Chinese chestnut landraces from five geographical regions in China via genotyping by sequencing. Results showed that the genetic diversity level of the five populations from different regions was relatively high, with an observed heterozygosity of 0.2796–0.3427. The genetic diversity level of the population in the mid-western regions was the highest, while the population north of the Yellow River was the lowest. Molecular variance analysis showed that the variation among different populations was only 2.07%, while the intra-group variation reached 97.93%. The Chinese chestnut samples could be divided into two groups: a northern and southern population, separated by the Yellow River; however, some samples from the southern population were genetically closer to samples from the northern population. We speculate that this might be related to the migration of humans during the Han dynasty due to the frequent wars that took place during this period, which might have led to the introduction of chestnut to southern regions. Some samples from Shandong Province and Beijing City were outliers that did not cluster with their respective groups, and this might be caused by the special geographical, political, and economic significance of these two regions. The findings of our study showed the complex genetic relationships among Chinese chestnut landraces and the high genetic diversity of these resources.
Chestnut (Castanea spp., Fagaceae family) is an economically and ecologically valuable species. The main goals of chestnut production vary among species and countries and depend on the ecological characteristics of orchards, agronomic management, and the architecture of chestnut trees. Here, we review recent research on chestnut trees, including the effects of fungal diseases (Cryphonectria parasitica and Phytophthora cinnamomi) and insect pests (Dryocosmus kuriphilus Yasumatsu), molecular markers for breeding, ecological effects, endophytic fungi, and extracts with human health benefits. We also review research on chestnut in the food science field, technological improvements, the soil and fertilizer used for chestnut production, and the postharvest biology of chestnut. We noted differences in the factors affecting chestnut production among regions, including China, the Americas, and Europe, especially in the causal agents of disease and pests. For example, there is a major difference in the resistance of chestnut to C. parasitica in Asian, European, and American countries. Our review provides new insights into the integrated disease and pest management of chestnut trees in China. We hope that this review will foster collaboration among regions and help to clarify differences in the direction of breeding efforts among countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.