Uterine arteriovenous fistula is a rare and potentially life-threatening condition. Uterine artery embolization is a safe and effective choice of treatment for this condition, and it can preserve both uterus and ovary function.
Whether the use of endovascular embolization could provide additional benefits in patients treated with stereotactic radiosurgery (SRS) for intracranial arteriovenous malformations (IAVMs) remains controversial. The current meta-analysis was conducted to assess the efficacy and safety of SRS with and without prior endovascular embolization in patients with IAVMs. The electronic databases of PubMed, EmBase, and Cochrane Library were systematically searched for eligible studies published from inception to August 12, 2020. The pooled results for obliteration rate, rehemorrhage rate, and permanent neurological deficits were calculated by odds ratios (ORs) with 95% confidence intervals (CIs) using the random-effects model. The sensitivity analysis, subgroup analysis, and publication bias for investigated outcomes were also evaluated. Nineteen studies (two prospective and 17 retrospective studies) involving a total of 3,454 patients with IAVMs were selected for the final meta-analysis. We noted that prior embolization and SRS were associated with a lower obliteration rate compared with SRS alone (OR, 0.57; 95% CI, 0.44–0.74;
P
<
0.001
). However, prior embolization and SRS were not associated with the risk of rehemorrhage (OR, 1.05; 95% CI, 0.81–1.34;
P
=
0.729
) and permanent neurological deficits (OR, 0.80; 95% CI, 0.48–1.33;
P
=
0.385
) compared with SRS alone. The sensitivity analysis suggested that prior embolization might reduce the risk of permanent neurological deficits in patients with IAVMs treated with SRS. The treatment effects of prior embolization in patients with IAVMs could be affected by nidus volume, margin dose, intervention, and follow-up duration. This study found that prior embolization was associated with a reduced risk of obliteration in patients with IAVMs treated with SRS. Moreover, prior embolization might reduce the risk of permanent neurological deficits in patients with IAVMs.
Long-term exposure to cadmium (Cd) can severely damage the kidney, where orally absorbed Cd accumulates. However, the molecular mechanisms of Cd-induced kidney damage, especially the early biomarkers of Cd-induced renal carcinogenesis, are unclear. In the present study, we established a rat kidney injury model by intragastric administration of Cd to evaluate the morphological and biochemical aspects of kidney injury. We randomly divided Sprague-Dawley rats into control, low Cd (3 mg/kg), and high Cd (6 mg/kg) groups and measured biochemical indices associated with renal toxicity after 2, 4, and 8 weeks of treatment. The Cd-exposed mice had significantly higher Cd concentrations in blood and renal tissues as well as blood urea nitrogen (BUN), β2-microglobulin (β2-MG), urinary protein excretion, and tumor necrosis factor-α (TNF-α) levels. Furthermore, histopathological and transmission electron microscopy (TEM) observations revealed structural disruption of renal tubules and glomeruli after 8 weeks of exposure to the high Cd regimen. Besides, microarray technology experiments showed that Cd increased the expression of genes related to the chemical carcinogenesis pathway in kidney tissue. Finally, combining the protein–protein interaction (PPI) network of the Cd carcinogenesis pathway genes with the microarray and Comparative Toxicogenomics Database (CTD) results revealed two overlapping genes, CYP1B1 and UGT2B. Therefore, the combined molecular and bioinformatics experiments’ results suggest that CYP1B1 and UGT2B are biomarkers of Cd-induced kidney injury with precancerous lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.