HS6ST2 in the reverse subtraction library was identified as a down-regulated gene in OA and KBD at both mRNA and protein levels. The percentage of safranion O staining area was correlated positively with the percentage of HS6ST2-positive chondrocytes in OA and KBD cartilage. After HS6ST2-specific short interfering RNA (siRNA) transfection to C28/I2 cells, the cell viability was inhibited significantly, and the mRNA expression levels of SOX9 and AGC1 were reduced markedly, while MMP3 expression was increased significantly. CONCLUSION; HS6ST2 down-regulation was identified in both OA and KBD cartilage. The findings first suggest that HS6ST2 may participate in the pathogenesis of OA and KBD by influencing aggrecan metabolism.
Abstract. In our previous study, we reported that heparan sulfate 6-O-sulfotransferase-2 (HS6ST2) plays an important role in the cartilage of patients with osteoarthritis and Kashin-Beck disease and that it regulates aggrecan (Acan) metabolism and the viability of chondrocytes. However, its role in chondrocyte differentiation remains poorly understood. In the present study, we aimed to investigate the role of HS6ST2 in chondrocyte differentiation in vitro using mouse prechondrocytic cells. We found that the overexpression or silencing of HS6ST2 significantly enhanced or abrogated the effects of fibroblast growth factor (FGF)-2 on chondrocyte growth, respectively. We found that the overexpression of HS6ST2 significantly induced the expression of Acan as well as the amount of total proteoglycans in the prechondrocytic cells in the presence of FGF-2, whereas the silencing of HS6ST2 caused the opposite effect. Furthermore, the expresssion of FGF-2-induced sex-determining region Y-type high mobility group box protein 9 (SOX9), a major transcription factor for chondrocyte proliferation and differentiation, was also enhanced or blocked by HS6ST2 overexpression or HS6ST2 knockdown, respectively. Additionally, Wnt/β-catenin signaling, which inhibited chondrocyte proliferation and differentiation, was suppressed by HS6ST2. Taken together, these data suggest that HS6ST2 plays an important role in regulating chondrocyte growth and differentiation by modulating FGF-2 signaling, thus indicating that it may be a potential and valuable molecular target for the treatment of skeletal dysplasias, such as dwarfism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.