Partially inverse spinel CoFe2O4, which may be prepared through various heat treatments, differs remarkably from the ideal inverse spinel in many properties. The structure of partially inverse spinel CoFe2O4 as well as its electronic and magnetic properties through a systemic theoretical calculation of (Co1−x
Fe
x
)Tet(Co
x
Fe2−x
)OctO4 (x = 0, 0.25, 0.5, 0.75 and 1.0) have been investigated by the generalized gradient approximation (GGA) + U approach. It is found that the Co and Fe ions prefer their high spin configurations with higher spin moments at octahedral sites in all the studied cases, in line with experimental observations. The Co ions at the octahedral sites favour being far away from each other in the partial inverse spinels, which also show half metallicity at certain inversion degrees.
Enzymes, as natural catalysts with remarkable catalytic activity and high region-selectivities, hold great promise in industrial catalysis. However, applications of enzymatic transformation are hampered by the fragility of enzymes in harsh conditions. Recently, metal–organic frameworks (MOFs), due to their high stability and available structural properties, have emerged as a promising platform for enzyme immobilization. Synthetic strategies of enzyme-MOF composites mainly including surface immobilization, covalent linkage, pore entrapment and
in situ
synthesis. Compared with free enzymes, most immobilized enzymes exhibit enhanced resistance against solvents and high temperatures. Besides, MOFs serving as matrixes for enzyme immobilization show extraordinary superiority in many aspects compared with other supporting materials. The advantages of using MOFs to support enzymes are discussed. To obtain a high enzyme loading capacity and to reduce the diffusion resistance of reactants and products during the reaction, the mesoporous MOFs have been designed and constructed. This review also covers the applications of enzyme-MOF composites in bio-sensing and detection, bio-catalysis, and cancer therapy, which is concerned with interdisciplinary nano-chemistry, material science and medical chemistry. Finally, some perspectives on reservation or enhancement of bio-catalytic activity of enzyme-MOF composites and the future of enzyme immobilization strategies are discussed.
The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.