The unprecedented title reaction between glycine derivatives and indoles, as well as the auto-oxidative Povarov/aromatization tandem reaction of glycine derivatives with olefins are described. The reactions were performed in the absence of redox-active catalysts and chemical oxidants under mild reaction conditions. Only simple organic solvents and air (or O2 ) were required.
The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry makes it practical to evaluate static correlation in a large active space, while dynamic correlation provides a critical correction to the DMRG reference for strong-correlated systems and is usually obtained using multireference perturbation (MRPT) or configuration interaction (MRCI) methods with internal contraction (ic) approximation. These methods can use an active space scalable to relatively larger size references than has previously been possible. However, they are still hardly applicable to systems with an active space larger than 30 orbitals and/or a large basis set because of high computation and storage costs of high-order reduced density matrices (RDMs) and the crucial dependence of the MRCI Hamiltonian dimension on the number of virtual orbitals. In this work, we propose a new effective implementation of DMRG-MRCI, in which we use reconstructed CASCI-type configurations from DMRG wave function via the entropy-driving genetic algorithm (EDGA) [ Luo et al. J. Chem. Theory Comput. 2017 , 13 , 4699 - 4710 . ] and integrate it with MRCI by an external contraction (ec) scheme. This bypasses the bottleneck of computing high-order RDMs in traditional DMRG dynamic correlation methods with ic approximation, and the number of MRCI configurations is not dependent on the number of virtual orbitals. Therefore, the DMRG-ec-MRCI method is promising for dealing with a larger active space than 30 orbitals and large basis sets. We demonstrate the capability of our DMRG-ec-MRCI method in several benchmark applications, including the evaluation of the potential energy curve of Cr, single-triplet gaps of higher n-acene molecules, and the energy of the Eu-BTBP(NO) complex.
A novel CBr4-mediated dehydrogenative Povarov/aromatization tandem reaction of glycine derivatives with alkenes, leading to complex quinoline derivatives, and a CBr4-mediated dehydrogenative C-H functionalization of N-aryl tetrahydroisoquinolines with nucleophiles to form C-C and C-P bonds are reported. The reactions were performed under very simple and mild reaction conditions; only CBr4 was used as a promoter. A plausible mechanism involving a radical process is proposed.
A novel stable radical cation triarylaminium salt able to induce aerobic oxidative α-C-H functionalization of tertiary amines in catalytic amounts has been developed. The reaction is performed in the absence of any other additives under mild conditions and only requires atmosphere air as a sustainable co-oxidant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.