Background Although the cytokine, interleukin-31 (IL-31), has been implicated in inflammatory and lymphoma-associated itch, the cellular basis for its pruritic action is yet unclear. Objective To determine whether immune cell-derived IL-31 directly stimulates sensory neurons, and to identify the molecular basis of IL-31-induced itch. Methods We used immunohistochemistry and qRTPCR to determine IL-31 expression levels in mice and humans. Immunohistochemistry, immunofluorescence, qRTPCR, in vivo pharmacology, western blotting, single cell calcium and electrophysiology were used to examine the distribution, functionality and cellular basis of the neuronal IL-31 receptor (IL-31RA) in mice and humans. Results Among all immune and resident skin cells examined, IL-31 was predominantly produced by TH2 and to a significantly lesser extend by mature dendritic cells. Cutaneous and intrathecal injections of IL-31 evoked intense itch, and its concentration increased significantly in murine atopic-like dermatitis skin. Both human and mouse DRG neurons express IL-31RA, largely in neurons that co-express TRPV1. IL-31-induced itch was significantly reduced in TRPV1- and TRPA1-deficient mice, not c-kit or PAR-2 mice. In cultured primary sensory neurons, IL-31 triggered Ca2+-release and ERK1/2 phosphorylation, Inhibition of which blocked IL-31 signaling in vitro and reduced IL-31-induced scratching in vivo. Conclusion IL-31RA is a functional receptor expressed by a small subpopulation of IL-31RA+/TRPV1+/TRPA1+ neurons, and is a critical neuro-immune link between TH2 cells and sensory nerves for the generation of T cell-mediated itch. Thus, targeting neuronal IL-31RA may be effective in the management of TH2-mediated itch, including atopic dermatitis and cutaneous T cell lymphoma.
SUMMARYAlthough microglia are implicated in nerve injury-induced neuropathic pain, how injured sensory neurons engage microglia is unclear. Here we demonstrate that peripheral nerve injury induces de novo expression of colony-stimulating factor 1 (CSF1) in injured sensory neurons. The CSF1 is transported to the spinal cord where it targets the microglial CSF1 receptor (CSF1R). Cre-mediated sensory neuron deletion of Csf1 completely prevented nerve injury-induced mechanical hypersensitivity and reduced microglia activation and proliferation. In contrast, intrathecal injection of CSF1 induces mechanical hypersensitivity and microglial proliferation. Nerve injury also upregulated CSF1 in motoneurons, where it is required for ventral horn microglial activation and proliferation. Downstream of CSF1R, we found that the microglial membrane adapter protein DAP12 is required for both nerve injury- and intrathecal CSF1-induced upregulation of pain-related microglial genes and the ensuing pain, but not for microglia proliferation. Thus, both CSF1 and DAP12 are potential targets for the pharmacotherapy of neuropathic pain.
Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nociception and pain has not been explored. We exploit these probes to demonstrate that Nav1.1-expressing fibers are modality-specific nociceptors: their activation elicits robust pain behaviors without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibers also express Nav1.1 and show enhanced toxin sensitivity in a model of irritable bowel syndrome. Altogether, these findings establish an unexpected role for Nav1.1 in regulating the excitability of sensory nerve fibers that underlie mechanical pain.
The original formulation of Gate Control Theory (GCT) proposed that the perception of pain produced by spinal cord signaling to the brain depends on a balance of activity generated in large (non-nociceptive) and small (nociceptive) diameter primary afferent fibers. GCT proposed that activation of the large diameter afferent “closes” the gate by engaging a superficial dorsal horn interneuron that inhibits projection neuron firing. Activation of the nociceptors “opens” the gate through concomitant excitation of projection neurons and inhibition of inhibitory interneurons. Sixty years after publication of the GCT, we are faced with an ever-growing list of morphologically and neurochemically distinct spinal cord interneurons. This review highlights the complexity of superficial dorsal horn circuitry and addresses whether the premises outlined in GCT still have relevance today. By examining the dorsal horn circuits underlying the transmission of “pain” and “itch” messages, we also address the extent to which labeled lines can be incorporated into a contemporary view of GCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.