Patients with end-stage renal disease (ESRD) experience changes in both the structure and function of their brain networks. In the past, cognitive impairment was often classified based on connectivity features, which only reflected the characteristics of the binary brain network or weighted brain network. It exhibited limited interpretability and stability. This study aims to quantitatively characterize the topological properties of brain functional networks (BFNs) using multi-threshold derivative (MTD), and to establish a new classification framework for end-stage renal disease with mild cognitive impairment (ESRDaMCI). The dynamic BFNs (DBFNs) were constructed and binarized with multiple thresholds, and then their topological properties were extracted from each binary brain network. These properties were then quantified by calculating their derivative curves and expressing them as multi-threshold derivative (MTD) features. The classification results of MTD features were compared with several commonly used DBFN features, and the effectiveness of MTD features in the classification of ESRDaMCI was evaluated based on the classification performance test. The results indicated that the linear fusion of MTD features improved classification performance and outperformed individual MTD features. Its accuracy, sensitivity, and specificity were 85.98 ± 2.92%, 86.10 ± 4.11%, and 81.54 ± 4.27%, respectively. Finally, the feature weights of MTD were analyzed, and MTD-cc had the highest weight percentage of 28.32% in the fused features. The MTD features effectively supplemented traditional feature quantification by addressing the issue of indistinct classification differentiation. It improved the quantification of topological properties and provided more detailed features for diagnosing cognitive disorders.
The clinical scores are applied to determine the stage of cognitive function in patients with end-stage renal disease (ESRD). However, accurate clinical scores are hard to come by. This paper proposed an integrated prediction framework with GPLWLSV to predict clinical scores of cognitive functions in ESRD patients. GPLWLSV incorporated three parts, graph theoretic algorithm (GTA) and principal component analysis (PCA), whale optimization algorithm with Levy flight (LWOA), and least squares support vector regression machine (LSSVRM). GTA was adopted to extract features from the brain functional networks in ESRD patients, while PCA was used to select features. LSSVRM was built to explore the relationship between the selected features and the clinical scores of ESRD patients. Whale optimization algorithm (WOA) was introduced to select better parameters of the kernel function in LSSVRM; it aims to improve the exploration competence of LSSVRM. Levy flight was used to optimize the ability to jump out of local optima in WOA and improve the convergence of coefficient vectors in WOA, which lead to an increase in the generalization ability and convergence speed of WOA. The results validated that the prediction accuracy of GPLWLSV was higher than that of several comparable frameworks, such as GPSV, GPLSV, and GPWLSV. In particular, the average of root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) between the predicted scores and the actual scores of ESRD patients was 2.40, 2.06, and 9.83%, respectively. The proposed framework not only can predict the clinical scores more accurately but also can capture imaging markers associated with decline of cognitive function. It helps to understand the potential relationship between structural changes in the brain and cognitive function of ESRD patients.
Combined arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI) can reveal more comprehensive properties of the spatiotemporal and quantitative properties of brain networks. Imaging markers of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI) will be sought from these properties. The current multimodal classification methods often neglect to collect high-order relationships of brain regions and remove noise from the feature matrix. A multimodal classification framework is proposed to address this issue using hypergraph latent relation (HLR). A brain functional network with hypergraph structural information is constructed by fMRI data. The feature matrix is obtained through graph theory (GT). The cerebral blood flow (CBF) from ASL is selected as the second modal feature matrix. Then, the adaptive similarity matrix is constructed by learning the latent relation between feature matrices. Latent relation adaptive similarity learning (LRAS) is introduced to multi-task feature learning to construct a multimodal feature selection method based on latent relation (LRMFS). The experimental results show that the best classification accuracy (ACC) reaches 88.67%, at least 2.84% better than the state-of-the-art methods. The proposed framework preserves more valuable information between brain regions and reduces noise among feature matrixes. It provides an essential reference value for ESRDaMCI recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.