In this work, the synthesis and characterization ofgraphene-metal nanocomposite, a transparent conductive layer, is examined. This transparent conductive layer is named graphene-Ag-graphene (GAG), which makes full use of the high electron mobility and high conductivity characteristics of graphene, while electromagnetically induced transparency (EIT) is induced by Ag nanoparticles (NPs). The nanocomposite preparation technique delivers three key parts including the transfer of the first layer graphene, spin coating of Ag NPs and transfer of the second layer of graphene. The GAG transparent conductive nanocomposite layer possess a sheet resistance of 16.3 ohm/sq and electron mobility of 14,729 cm2/(v s), which are superior to single-layer graphene or other transparent conductive layers. Moreover, the significant enhancement of photoluminescence can be ascribed to the coupling of the light emitters in multiple quantum wells with the surface plasmon Ag NPs and the EIT effect.
Bi‐stability of electronic paper display (EPD) is reported, and the updated methods for EPD products without battery are also introduced. One case is reported with system design, hardware and integration. One product is demonstrated with this technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.