Dopamine, an important modulator in the gastrointestinal system, induces concentration-dependent transepithelial ion transport in the distal colon of the rat, as shown by a decrease in the short-circuit current, and acts in a segmentally dependent manner. However, the receptor(s) that mediates dopamine-induced ion transport is unknown. We have investigated the receptor mechanisms underlying dopamine-induced colonic ion transport by means of short-circuit current recording, real-time polymerase chain reaction, and Western blotting analysis, plus gene transfection and enzyme-linked immunosorbance assay. mRNA transcripts of adrenoceptors (alpha, beta) and dopaminergic receptors (D(1) and D(2)) were detected in the rat late distal colonic mucosa, with beta(2) displaying the highest expression. A similar result was found in human colorectal mucosa (equivalent of late distal colon in rat). Pretreatment with a beta(1)-adrenoceptor antagonist (CGP-20712A) and a beta(2)-adrenoceptor antagonist (ICI 118,551) inhibited the dopamine-induced short-circuit current response by 52.59% and 92.51%, respectively. However, neither dopamine D(1) receptor antagonist SCH-23390 nor dopamine D(2) receptor antagonist sulpiride blocked the effect of dopamine. Protein expression of both beta(1)- and beta(2)-adrenoceptors was found in the mucosa of rat distal colon and human sigmoid colon and rectum. Dopamine significantly increased intracellular cAMP levels in COS-7 cells transfected with beta(1)- or beta(2)-adrenoceptors. Thus, beta-adrenoceptors (mainly beta(2)-adrenoceptors), but not dopamine receptors, mediate dopamine-induced ion transport in the late distal colon of the rat. This extends our knowledge of the late distal colon (rats) or colorectum (human) and provides further experimental evidence that might aid the prevention, diagnosis, and clinical therapy of human colorectal diseases.
This study was designed to investigate the proliferation inhibition and apoptosis-promoting effect under hyperthermia and chemotherapy treatment, at cellular level. Human gastric cancer cell line SGC-7901 was cultivated with 5-fluorouracil at different temperatures. Cell proliferation and apoptosis were determined, and expression of Bcl-2 and HSP70 was measured at different treatments. Cell survival rates and inhibition rates in chemotherapy group, thermotherapy group, and thermo-chemotherapy group were drastically lower than the control group (P<0.05). For tumor cells in the thermo-chemotherapy group, survival rates and inhibition rates at three different temperatures were all significantly lower than those in chemotherapy group and thermotherapy group (P<0.05). 5-Fluorouracil induced apoptosis of SGC-7901 cells with a strong temperature dependence, which increased gradually with increase in temperature. At 37°C and 43°C there were significant differences between the thermotherapy group and chemotherapy group and between the thermo-chemotherapy group and thermotherapy group (P<0.01). The expression of Bcl-2 was downregulated and HSP70 was upregulated, with increase in temperature in all groups. Cell apoptosis was not significant at 46°C (P>0.05), which was probably due to thermotolerance caused by HSP70 accumulation. These results suggested that hyperthermia combined with 5-fluorouracil had a synergistic effect in promoting apoptosis and enhancing thermotolerance in gastric cancer cell line SGC-7901.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.