Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.