Understanding salt dynamics is important to adequately model salt intrusion, baroclinic forcing, and sediment transport. In this paper, the importance of the residual salt transport due to tidal advection in well-mixed tidal estuaries is studied. The water motion is resolved in a consistent way with a width-averaged analytical model, coupled to an advection–diffusion equation describing the salt dynamics. The residual salt balance obtained from the coupled model shows that the seaward salt transport driven by river discharge is balanced by the landward salt transport due to tidal advection and horizontal diffusion. It is found that the tidal advection behaves as a diffusion process, and this contribution is named tidal advective diffusion. The horizontal diffusion parameterizes processes not explicitly resolved in the model and is called the prescribed diffusion. The tidal advective diffusion results from the correlation between the tidal velocity and salinity and can be explicitly calculated with the dominant semidiurnal water motion. The sensitivity analysis shows that tidal advective diffusivity increases with increasing bed roughness and decreasing vertical eddy viscosity. Furthermore, tidal advective diffusivity reaches its maximum for moderate water depth and moderate convergence length. The relative importance of tidal advective diffusion is investigated using the residual salt balance, with the prescribed diffusion coefficient obtained from the measured salinity field. The tidal advective diffusion dominates the residual salt transport in the Scheldt estuary, and other processes significantly contribute to the residual salt transport in the Delaware estuary and the Columbia estuary.
The study was conducted to investigate the effects of dietary stevioside (STE) supplementation on the lipopolysaccharide (LPS)-induced intestinal mucosal damage of broiler chickens. A total of 192 one-day-old male Ross 308 broiler chicks were randomly divided into four treatments: (1) basal diet (CON); (2) basal diet supplemented with 250 mg/kg stevioside (STE);(3) basal diet + LPS-challenge (LPS); (4) basal diet supplemented with 250 mg/kg stevioside + LPS-challenge (LPS + STE). LPS-challenged groups received an intraperitoneal injection of LPS at 17, 19 and 21 d, whereas the CON and STE groups received a saline injection. The results showed that dietary STE supplementation normalized LPS-induced changes in protein expression of p-NF-κB and p-IκBα, mRNA expression of inflammatory genes (TLR4, NF-κB, and IFN-γ), tight junction-related genes (CLDN2, OCLN, and ZO-1), and antioxidant genes (Nrf2 and HO-1). LPS-induced decreases in serum diamine oxidase (DAO) level, villus height-to-crypt depth ratio, apoptotic index, and protein expression of proliferating cell nuclear antigen (PCNA) were reversed with dietary STE supplementation. Additionally, STE supplementation ameliorated the redox damage by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC) and antioxidant enzyme activity. In conclusion, dietary stevioside supplementation could alleviate LPS-induced intestinal mucosal damage through anti-inflammatory and antioxidant effects in broiler chickens.Antioxidants 2019, 8, 575 2 of 20 and oxidative status of the intestine in broiler chickens [7][8][9]. Thus, LPS has been widely applied to establish a model of intestinal mucosal damage in broiler chickens [2,[7][8][9][10]. It is necessary to explore feed additives with therapeutic potential for disrupted intestinal homeostasis of LPS-challenged in broilers.Stevioside (STE) is a natural diterpenoid glycoside extracted from the Stevia rebaudiana (Bertoni), which has been proven to be safe in the food industry [11]. A previous study has suggested that STE exerts no harmful effects in the chicken diet with a dose of 667 mg/kg [12]. Despite STE being 250−300 times sweeter than sucrose, it has several nutritional and medical activities such as anti-hyperglycaemic [13], anti-hypertensive [14], and anti-tumor activities [15]. Furthermore, several studies have shown that STE exerts anti-inflammatory and antioxidant effects both in vivo and in vitro [11,14,16]. In rats, STE could prevent liver inflammation through antioxidant activity by activating Nrf2 and anti-inflammatory activity by suppressing NF-κB signaling [11]. In a human colonic cell line, steviol (a derivative of STE) suppressed the IL-8 release induced by TNF-α, and reduced the protein expression of NF-κB [17]. STE could also attenuate the LPS-induced synthesis of pro-inflammatory cytokines by regulating IκBα/NF-κB signaling pathway [16]. In mice, STE promoted macrophage function and increased humoral immune response [18]. STE treatment enhanced antioxidant defense in both the adi...
A semianalytical three-dimensional model is set up to dynamically calculate the coupled water motion and salinity for idealized well-mixed estuaries and prognostically investigate the influence of each physical mechanism on the residual salt transport. As a study case, a schematized estuary with an exponentially converging width and a channel-shoal structure is considered. The temporal correlation between horizontal tidal velocities and tidal salinities is the dominant process for the landward residual salt transport. The residual salt transport induced by residual circulation is locally significant, but the induced salt transport integrated over the cross section is small. The impacts of the estuarine geometry, Coriolis force, and bathymetry on the salt dynamics are studied using three dedicated experiments, in which the impact of each of these factors is studied separately. To assess the impact of width convergence, a convergent estuary without bathymetric variations or Coriolis force is considered. In this experiment, the temporal correlation between tidal velocities and salinities is the only landward salt transport process. In the second experiment, Coriolis effects are included. This results in a significant residual salt transport cell due to the advection of the tidally averaged salinity by residual circulation, with salt imported into the estuary from the left side and exported on the right (looking seaward). In the last experiment, a lateral channel-shoal structure is included while the Coriolis effects are excluded. This results in a significant landward salt transport through the deeper channel and a seaward salt transport over the shoals due to the advection of the tidally averaged salinity by residual circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.