The exogenous administration of cytidine-5'-diphosphate (CDP)-choline has been used extensively as a brain activator in different neurological disorders that are associated with memory deficits. A total of 50 rats were utilized to (a) determine whether exogenously administered CDP-choline could attenuate posttraumatic motor and spatial memory performance deficits and (b) determine whether intraperitoneal (i.p.) administration of CDP-choline increases acetylcholine (ACh) release in the dorsal hippocampus and neocortex. In the behavioral study, traumatic brain injury (TBI) was produced by lateral controlled cortical impact (2-mm deformation/6 m/sec) and administered CDP-choline (100 mg/kg) or saline daily for 18 days beginning 1 day postinjury. At 1 day postinjury, rats treated with CDP-choline 15 min prior to assessment performed significantly better than saline-treated rats. Between 14-18 days postinjury, CDP-choline-treated rats had significantly less cognitive (Morris water maze performance) deficits that injured saline-treated rats. CDP-choline treatment also attenuated the TBI-induced increased sensitivity to the memory-disrupting effects of scopolamine, a muscarinic antagonist. The microdialysis studies demonstrated for the first time that a single i.p. administration of CDP-choline can significantly increase extracellular levels of ACh in dorsal hippocampus and neocortex in normal, awake, freely moving rats. This article provides additional evidence that spatial memory performance deficits are, at least partially, associated with deficits in central cholinergic neurotransmission and that treatments that enhance ACh release in the chronic phase after TBI may attenuate cholinergic-dependent neurobehavioral deficits.
Oxidative stress is a significant contributor to the secondary sequelae of traumatic brain injury (TBI), and may mediate subsequent neurobehavioral deficits and histopathology. The present study examined the neuroprotective effects of bromocriptine (BRO), a dopamine D2 receptor agonist with significant antioxidant properties, on cognition, histopathology, and lipid peroxidation in a rodent model of focal brain trauma. BRO (5 mg/kg) or a comparable volume of vehicle (VEH) was administered intraperitoneally 15 min prior to cortical impact or sham injury. In experiment 1, spatial learning was assessed in an established water maze task on post-surgery days 14-18, followed by quantification of hippocampal cell survival and cortical lesion volume at 4 weeks. In experiment 2, rats were sacrificed 1 hr post-surgery, and malondialdehyde (MDA), the end product of lipid peroxidation, was measured in the frontal cortex, striatum, and substantia nigra using a thiobarbituric acid reactive substances assay. The TBI+BRO group was significantly more adept at locating a hidden platform in the water maze compared to the TBI+VEH group and also exhibited a greater percentage of surviving CA3 hippocampal neurons. TBI increased MDA in all examined regions of the VEH-treated, but not BRO-treated group versus SHAMs. MDA was significantly decreased in both the striatum (4.22 +/- 0.52 versus 5.60 +/- 0.44 nmol per mg/tissue +/- SEM) and substantia nigra (4.18 +/- 0.35 versus 7.76 +/- 2.05) of the TBI+BRO versus TBI+VEH groups, respectively, while only a trend toward decreased MDA was observed in the frontal cortex (5.44 +/- 0.44 versus 6.96 +/- 0.77). These findings suggest that TBI-induced oxidative stress is attenuated by acute BRO treatment, which may, in part, explain the benefit in cognitive and histological outcome.
Disturbances in dopamine neurotransmission contribute to frontal lobe dysfunction after traumatic brain injury. The changes in dopamine neurotransmission may be mediated by alterations in the dopamine transporter, which plays a key role in maintaining dopamine homeostasis. To determine whether the dopamine transporter system is altered after traumatic brain injury, dopamine transporter protein was examined bilaterally in the rat frontal cortex by Western blot at 1, 7, and 28 days after controlled cortical impact or sham injury ( = 6/group). Dopamine transporter protein expression was decreased in the injured (ipsilateral) cortex at 7 days and bilaterally at 28 days in injured sham control rats. The decrease in dopamine transporter protein levels may reflect a traumatic brain-injury-induced down-regulation of dopamine transporter and/or a loss of dopaminergic fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.