Interleukin-33 (IL-33) is associated with the development of Th2 responses. This study examined the potential role of IL-33 in the pathogenic process of chronic hepatitis C (CHC) in Chinese patients. The levels of serum IL-33 and sST2 in 154 patients with CHC, 24 with spontaneously resolved HCV (SR-HCV) infection and 20 healthy controls (HC), were analyzed by ELISA. The concentrations of serum IL-2, IFN-γ, TNF-α, IL-4, IL-6, and IL-10, HCV loads, ALT, AST, and HCV-Ab were measured. We found that the levels of serum IL-33 in CHC patients were significantly higher than those of SR-HCV and HC but decreased after treatment with interferon for 12 weeks. More importantly, the levels of serum IL-33 were correlated with the concentrations of ALT and AST in CHC patients. The levels of serum sST2, as a decoy receptor of IL-33, were significantly higher in CHC and SR-CHC patients than those in HC, and there was no correlation between the levels of serum sST2 and IL-33. The concentrations of serum IFN-γ and IL-6 in CHC patients were significantly lower than those of SR-HCV. These data suggest that IL-33 may be a pathogenic factor contributing to CHC-related liver injury.
Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. However, foreign body response and performance loss over time are major challenges stemming from the chemomechanical mismatch between sensors and tissues. Herein, microgels are utilized as large crosslinking centers in hydrogel networks to modulate the tradeoff between modulus and fatigue resistance/stretchability for producing hydrogels that closely match chemomechanical properties of neural tissues. The hydrogels exhibit notably different characteristics compared to nanoparticles reinforced hydrogels. The hydrogels exhibit relatively low modulus, good stretchability, and outstanding fatigue resistance. It is demonstrated that the hydrogels are well suited for fashioning into wearable and implantable sensors that can obtain physiological pressure signals, record the local field potentials in rat brains, and transmit signals through the injured peripheral nerves of rats. The hydrogels exhibit good chemomechanical match to tissues, negligible foreign body response, and minimal signal attenuation over an extended time, and as such is successfully demonstrated for use as long-term implantable sensory devices. This work facilitates a deeper understanding of biohybrid interfaces, while also advancing the technical design concepts for implantable neural probes that efficiently obtain physiological information.
Chronic low-grade inflammation is crucial for the development of insulin resistance and type 2 diabetes mellitus (T2DM), and immunocompetent cells, such as T-cells, B-cells, mast cells and macrophages, regulate the pathogenesis of T2DM. However, little is known about the role of natural killer (NK) and natural killer T (NKT) cells in the pathogenic process of T2DM. A total of 16 patients with new onset T2DM and nine healthy subjects were recruited, and the frequency of peripheral blood activated and inhibitory NK and NKT cells in individual subjects was determined by flow cytometry. The frequency of spontaneous and inducible interferon gamma (IFN-γ) and CD107a(+) NK cells was further examined, and the potential association of the frequency of NK cells with clinical measures was analyzed. While there was no significant difference in the frequency of peripheral blood NK and NKT cells between patients and controls, the frequency of NKG2D(+) NK and NKT cells in patients was significantly higher than those in the controls (P = 0.011). In contrast, the frequency of NKG2A(+) and KIR2DL3(+) inhibitory NK and NKT cells in patients was significantly lower than those in the controls (P = 0.002, P < 0.0001, respectively). Furthermore, the frequencies of NKG2D(+) NK cells were correlated significantly with the values of body mass index in patients. Moreover, the frequencies of spontaneous and inducible CD107a(+), but not IFN-γ-secreting, NK cells in patients were significantly higher than those in the controls (P < 0.004, P < 0.0001). Our data indicated that a higher frequency of activated NK cells may participate in the obesity-related chronic inflammation involved in the pathogenesis of T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.