There is an increased use of Internet-of-Things and wearable sensing devices in the urban marathon to ensure an effective response to unforeseen medical needs. However, the massive amount of real-time, heterogeneous movement and psychological data of runners impose great challenges on prompt medical incident analysis and intervention. Conventional approaches compile such data into one dashboard visualization to facilitate rapid data absorption but fail to support joint decision-making and operations in medical encounters. In this paper, we present MaraVis, a real-time urban marathon visualization and coordinated intervention system. It first visually summarizes real-time marathon data to facilitate the detection and exploration of possible anomalous events. Then, it calculates an optimal camera route with an arrangement of shots to guide offline effort to catch these events in time with a smooth view transition. We conduct a within-subjects study with two baseline systems to assess the efficacy of MaraVis.
As a decentralized training approach, horizontal federated learning (HFL) enables distributed clients to collaboratively learn a machine learning model while keeping personal/private information on local devices. Despite the enhanced performance and efficiency of HFL over local training, clues for inspecting the behaviors of the participating clients and the federated model are usually lacking due to the privacy-preserving nature of HFL. Consequently, the users can only conduct a shallow-level analysis of potential abnormal behaviors and have limited means to assess the contributions of individual clients and implement the necessary intervention. Visualization techniques have been introduced to facilitate the HFL process inspection, usually by providing model metrics and evaluation results as a dashboard representation. Although the existing visualization methods allow a simple examination of the HFL model performance, they cannot support the intensive exploration of the HFL process. In this study, strictly following the HFL privacy-preserving protocol, we design an exploratory visual analytics system for the HFL process termed HFLens, which supports comparative visual interpretation at the overview, communication round, and client instance levels. Specifically, the proposed system facilitates the investigation of the overall process involving all clients, the correlation analysis of clients' information in one or different communication round(s), the identification of potential anomalies, and the contribution assessment of each HFL client. Two case studies confirm the efficacy of our system. Experts' feedback suggests that our approach indeed helps in understanding and diagnosing the HFL process better.
As an alternative decentralized training approach, Federated Learning enables distributed agents to collaboratively learn a machine learning model while keeping personal/private information on local devices. However, one significant issue of this framework is the lack of transparency, thus obscuring understanding of the working mechanism of Federated Learning systems. This paper proposes a multi-agent visualization system that illustrates what is Federated Learning and how it supports multi-agents coordination. To be specific, it allows users to participate in the Federated Learning empowered multi-agent coordination. The input and output of Federated Learning are visualized simultaneously, which provides an intuitive explanation of Federated Learning for users in order to help them gain deeper understanding of the technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.