The organization of the head provides critical data for resolving the phylogenetic relationships and evolutionary history of extinct and extant euarthropods. The early Cambrian-period fuxianhuiids are regarded as basal representatives of stem-group Euarthropoda, and their anterior morphology therefore offers key insights for reconstructing the ancestral condition of the euarthropod head. However, the paired post-antennal structures in Fuxianhuia protensa remain controversial; they have been interpreted as both 'great appendages' and as gut diverticulae. Here we describe Chengjiangocaris kunmingensis sp. nov. and Fuxianhuia xiaoshibaensis sp. nov. from a new early Cambrian (Stage 3) fossil Lagerstätte in Yunnan, China. Numerous specimens of both species show a unique 'taphonomic dissection' of the anterodorsal head shield, revealing the cephalic organization in detail. We demonstrate the presence of a pair of specialized post-antennal appendages (SPAs) in the fuxianhuiid head, which attach at either side of the posteriorly directed mouth, behind the hypostome. Preserved functional articulations indicate a well-defined but restricted range of limb movement, suggestive of a simple type of sweep feeding. The organization of the SPAs in fuxianhuiids is incompatible with the (deutocerebral) anterior raptorial appendages of megacheirans, and argue against the presence of protocerebral limbs in the fuxianhuiids. The positions of the fuxianhuiid antennae and SPAs indicate that they are segmentally homologous to the deutocerebral and tritocerebral appendages of crown-group Euarthropoda respectively. These findings indicate that antenniform deutocerebral appendages with many podomeres are a plesiomorphic feature of the ancestral euarthropod head.
Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.stem-group Euarthropoda | Onychophora | phylogeny | Cambrian Explosion | Xiaoshiba Lagerstätte T he nervous system represents a critical source of phylogenetic information and has been used extensively for exploring the evolutionary relationships of extant Panarthropoda (i.e., Onychophora, Tardigrada, Euarthropoda) (1-7). Identification of fossilized nervous tissues has provided a unique perspective on early euarthropod brain neuroanatomy and suggests that broad patterns of extant neurological diversity were already in place by the Cambrian (8-11). The ventral nerve cord (VNC) reflects fundamental aspects of panarthropod body organization that complement the organization of the brain and together illuminate the evolution of the CNS (1-3, 5, 7, 12-16). The early evolutionary history of the panarthropod postcephalic CNS, however, remains obscure due to the exclusive preservation of brains in most available fossils (8,10,11). Moreover, the unresolved phylogenetic relationships within Panarthropoda complicate accurate reconstruction of the CNS ground pattern (16)(17)(18)(19)(20)(21)(22). In this study, we demonstrate the exceptional preservation of postcephalic neurological features in the early Cambrian fuxianhuiid Chengjiangocaris kunmingensis, an upper stem-group euarthropod (17) from the Xiaoshiba Lagerstätte, South China (23). These fossils clarify the neurological organization of the VNC in early euarthropod ancestors, thereby polarizing the evolution of the panarthropod CNS.
We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion.Collins' monster | Xiaoshiba Lagerstätte | Cambrian explosion | evolution | phylogeny
Crown-group crustaceans (Eucrustacea) are common in the fossil record of the past 500 million years back to the early Ordovician period, and very rare representatives are also known from the late Middle and Late Cambrian periods. Finds in Lower Cambrian rocks of the Phosphatocopina, the fossil sister group to eucrustaceans, imply that members of the eucrustacean stem lineage co-occurred, but it remained unclear whether crown-group members were also present at that time. 'Orsten'-type fossils are typically tiny embryos and cuticle-bearing animals, of which the cuticle is phosphatized and the material is three-dimensional and complete with soft parts. Such fossils are found predominantly in the Cambrian and Ordovician and provide detailed morphological and phylogenetic information on the early evolution of metazoans. Here we report an Orsten-type Konservat-Lagerstätte from the Lower Cambrian of China that contains at least three new arthropod species, of which we describe the most abundant form on the basis of exceptionally well preserved material of several growth stages. The limb morphology and other details of this new species are markedly similar to those of living cephalocarids, branchiopods and copepods and it is assigned to the Eucrustacea, thus representing the first undoubted crown-group crustacean from the early Cambrian. Its stratigraphical position provides substantial support to the proposition that the main cladogenic event that gave rise to the Arthropoda was before the Cambrian. Small leaf-shaped structures on the outer limb base of the new species provide evidence on the long-debated issue of the origin of epipodites: they occur in a set of three, derive from setae and are a ground-pattern feature of Eucrustacea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.