A novel two-stage method is proposed to properly identify the location and severity of damage in plate structures. In the first stage, a superposition of modal flexibility curvature (SMFC) is adopted to locate the damage accurately, and the identification index of modal flexibility matrix is improved. The low-order modal parameters are used and a new column matrix is formed based on the modal flexibility matrix before and after the structure is damaged. The difference of modal flexibility matrix is obtained, which is used as a damage identification index. Meanwhile, based on SMFC, a method of weakening the “vicinity effect” is proposed to eliminate the impact of the surrounding elements to the damaged elements when damage identification is carried out for the plate-type structure. In the second stage, the objective function based on the flexibility matrix is constructed, and according to the damage location identified in the first stage, the actual damage severity is determined by the enhanced whale optimization algorithm (EWOA). In addition, the effects of 3% and 10% noise on damage location and severity estimation are also studied. By taking a simply supported beam and a four-side simply supported plate as examples, the results show that the method can accurately estimate the damage location and quantify the damage severity without noise. When considering noise, the increase of noise level will not affect the assessment of damage location, but the error of quantifying damage severity will increase. In addition, damage identification of a steel-concrete composite bridge (I-40 Bridge) under four damage cases is carried out, and the results show that the modified method can evaluate the damage location and quantify 5%–92% of the damage severity.
Structural damage identification based on time domain method of vibration response has been widely developed in the recent decades, however, it still confronts some difficulties, such as measurement noise and model error. This paper proposes a novel two-stage damage identification method based on fractal dimension and whale optimization algorithm (WOA). In this study, based on vibration data, the difference in curvature of fractal dimension (DCFD) is used as the damage index to identify the location of suspicious damage elements in the first stage. A new objective function is proposed based on the curvature of fractal dimension (CFD) of acceleration signal, and the WOA is used to estimate the severity of the suspicious damaged element in the second stage. Firstly, the validity of the proposed method is verified by a numerical simply supported beam, and the results exhibit good damage identification ability. Then different noise levels (5% ~ 20%) are introduced into the dynamic responses to verify its robustness, the result shows that the method is of good anti-noise ability in the first stage. Although the second stage is slightly sensitive to noise, it can still effectively identify the severity of damage. Secondly, the vibration testing of a steel I-beam is designed to verify the rationality of the method in the application of actual structure. Finally, based on the simulated vibration test data of the I-40 Bridge, the applicability of the method to complex civil structure is verified, which shows that the method still has good ability to identify the location and severity of damage in complex structure and is of great significance in practical application.
Background: Cardiovascular disease (CVD) remains the leading cause of disease burden worldwide. Ferroptosis, an iron-dependent form of programmed cell death, is characterized by the lethal accumulation of lipid peroxidation, which is morphologically, biochemically and genetically distinct from apoptosis, necrosis and pyroptosis. Emerging evidence provides exciting novel insights to allow for a deeper understanding of the physiology and pathology of ferroptosis in CVD. Summary: The rapidly evolving insights into ferroptosis have revealed its role in the pathogenesis of diverse forms of CVD, including cardiomyopathy, heart failure, atherosclerosis, pulmonary arterial hypertension and cerebrovascular disease. Various types of metabolic pathways are involved in the regulation of ferroptosis, including iron metabolism, lipid metabolism and oxidative metabolism. Modulators of ferroptosis, such as several clinical drugs, preclinical compounds and other emerging materials, have been applied as promising approaches in the prevention and treatment of CVD. Key message: In this review, we provide a 360-degree view of the latest progress in the field of ferroptosis in CVD, highlight the pathogenic role of ferroptosis in CVD and also discuss the importance and future directions of targeting ferroptosis in CVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.