ObjectivesKashgar, located in Xinjiang, China has a high incidence of tuberculosis (TB) making prevention and control extremely difficult. In addition, there have been very few prediction studies on TB incidence here. We; therefore, considered it a high priority to do prediction analysis of TB incidence in Kashgar, and so provide a scientific reference for eventual prevention and control.DesignTime series study.Setting Kashgar, ChinaKashgar, China.MethodsWe used a single Box-Jenkins method and a Box-Jenkins and Elman neural network (ElmanNN) hybrid method to do prediction analysis of TB incidence in Kashgar. Root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to measure the prediction accuracy.ResultsAfter careful analysis, the single autoregression (AR) (1, 2, 8) model and the AR (1, 2, 8)-ElmanNN (AR-Elman) hybrid model were established, and the optimal neurons value of the AR-Elman hybrid model is 6. In the fitting dataset, the RMSE, MAE and MAPE were 6.15, 4.33 and 0.2858, respectively, for the AR (1, 2, 8) model, and 3.78, 3.38 and 0.1837, respectively, for the AR-Elman hybrid model. In the forecasting dataset, the RMSE, MAE and MAPE were 10.88, 8.75 and 0.2029, respectively, for the AR (1, 2, 8) model, and 8.86, 7.29 and 0.2006, respectively, for the AR-Elman hybrid model.ConclusionsBoth the single AR (1, 2, 8) model and the AR-Elman model could be used to predict the TB incidence in Kashgar, but the modelling and validation scale-dependent measures (RMSE, MAE and MAPE) in the AR (1, 2, 8) model were inferior to those in the AR-Elman hybrid model, which indicated that the AR-Elman hybrid model was better than the AR (1, 2, 8) model. The Box-Jenkins and ElmanNN hybrid method therefore can be highlighted in predicting the temporal trends of TB incidence in Kashgar, which may act as the potential for far-reaching implications for prevention and control of TB.
What is already known about this topic? Worldwide, tuberculosis (TB) continues to be the most important cause of death from a single infectious agent, and China has a high TB burden. Although the reported incidence of TB in students is lower than that in general population, TB outbreaks in schools have continuously been reported in the past years, suggesting that schools are a high-risk setting for TB transmission. What is added by this report? In total, 31 TB patients were founded in students. Epidemiological linkage among all TB cases could not be determined due to absence of genome sequencing. However, based on the analysis of screening results, the index case was probably the source of transmission. What are the implications for public health practice? The preventative measurements should be implemented in schools. Adding TB examinations into entrance examinations and strengthening health education could find TB cases early, and improving ventilation could decrease the risk of TB transmission in schools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.