In the silkworm Bombyx mori, non-susceptibility to the Zhenjiang (China) strain of the densonucleosis virus (DNV-Z) is controlled by the recessive gene nsd-Z (non-susceptible to DNV-Z), which is located on chromosome 15. Owing to a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the nsd-Z gene using silkworm strains Js and L10, which are classified as being highly susceptible and non-susceptible to DNV-Z, respectively. BC1 larvae were inoculated with the DNV-Z virus at the first instar, and DNA was extracted from the individual surviving pupae and analyzed for simple sequence repeat (SSR) markers. The nsd-Z gene was found to be linked to 7 SSR markers, as all the surviving larvae in the BC1female (F1female x L10male) showed the homozygous profile of strain L10, and the sick larvae in the BC1female (F1female x L10male) showed the heterozygous profile of Js x L10 F1 hybrids. Using a reciprocal BC1male (L101female x F1male) cross, we constructed a linkage map of 80.6 cM, with nsd-Z mapped at 30 cM and the closest SSR marker at a distance of 4.4 cM.
ABSTRACT. In the silkworm (Bombyx mori), resistance to the Zhenjiang (China) strain of the densonucleosis virus (DNV-Z) is controlled by the recessive gene nsd-Z (non-susceptible to DNV-Z), which is linked to 7 simple-sequence repeat markers. Markerassisted evaluation and selection of DNV-Z-resistant silkworms were used for predicting DNV-resistance in backcrossed animals. A silkworm race was bred using this method, and its economic characteristics were found to be similar to those of commercial silkworm races. These markers will therefore be useful for silkworm breeding programs and in screening for densonucleosis resistance in segregating populations.
Abstract. Two glutathione S-transferase (GST) cDNAs, GSTD2 and GSTS2, were cloned from the silkworm Bombyx mori. The B. mori GSTD2 (BmGSTD2) gene spans 4371 bp and consists of four introns and five exons that encode 222 amino acid residues. The deduced amino acid sequence of BmGSTD2 showed 58% protein sequence identity to the Delta-class GST of Maduca sexta. The B. mori GSTS2 (BmGSTS2) gene spans 3470 bp and consists of three introns and four exons that encode 206 amino acid residues. The deduced amino acid sequence of BmGSTS2 revealed 67%, 63%, and 61% protein sequence identities to the Sigma-class GSTs from B. mori, Platynota idaeusalis, and M. sexta, respectively. The BmGSTD2 and BmGSTS2 cDNAs were expressed as 25 kDa and 23 kDa polypeptides, respectively, in baculovirus-infected insect Sf9 cells. Northern blot and Western blot analyses showed that BmGSTD2 and BmGSTS2 were specifically expressed in three gut regions, indicating that the gut is the prime site for BmGSTD2 and BmGSTS2 synthesis in B. mori larvae.
The non-lepis wing of silkworm (Bombyx mori) is controlled by the recessive gene, nlw. Owning to lack of crossing over in females, the reciprocal backcrossed F(1) (BC(1)) progenies were used for linkage analysis and mapping of nlw based on the SSR linkage map and STS markers using the wild type (+(nlw)/+(nlw)) silkworm strain P50 and U06 with scaleless wing (nlw/nlw). The nlw gene was linked to eight SSR markers and one STS marker. All the individuals with the wild type in the BC1F (Using F(1) as female to backcross to the recessive parent, that is (U06xP50)xU06) showed heterozygous profile of (U06xP50) F(1), and the ones with non-lepis wing in BC1F exhibited the homozygous profile of the strain U06. Using a reciprocal BC1M (Using F1 as male to backcross to the recessive parent, that is U06x(U06xP50))cross, we constructed a linkage map of 125.6 cM, and the distance between nlw and the nearest marker cash2p was 11.4 cM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.