Human-Object Interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore Interactiveness Knowledge which indicates whether human and object interact with each other or not. We found that interactiveness knowledge can be learned across HOI datasets, regardless of HOI category settings. Our core idea is to exploit an Interactiveness Network to learn the general interactiveness knowledge from multiple HOI datasets and perform Non-Interaction Suppression before HOI classification in inference. On account of the generalization of interactiveness, interactiveness network is a transferable knowledge learner and can be cooperated with any HOI detection models to achieve desirable results. We extensively evaluate the proposed method on HICO-DET and V-COCO datasets. Our framework outperforms state-of-the-art HOI detection results by a great margin, verifying its efficacy and flexibility. Code is available at https://github.com/DirtyHarryLYL/ Transferable-Interactiveness-Network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.