Injectable hydrogels derived from natural extracellular matrices exhibit excellent adhesion to endothelial cells in vitro and are ideal for many biomedical applications. However, their applicability in vivo is limited by the risk of infection or immunogenicity, and the current injectables also suffer from degradation, viscosity, and drug release. In this study, a multifunctional hydrogel scaffold (COB hydrogels) was constructed by incorporating bioactive glass nanoparticles with a Schiff base crosslinking-based hydrogel composed of carboxymethyl chitosan and oxidized cellulose. The incorporation of nanoparticles not only shortened the gelation time of the COB hydrogels, but also enhanced the performance of the hydrogel in terms of function, such as drug loading capacity. The prepared hydrogels also have self-healing ability, injectability, drug loading and sustained release, antibacterial properties and biocompatibility. In addition, given their no cytotoxicity and mild inflammation in vivo, the hydrogel scaffolds will be important for tissue engineering and drug delivery applications.
Uncontrolled hemorrhage and infection are the main reasons for many trauma-related deaths in both clinic and battlefield. However, most hemostatic materials have various defects and side effects, such as low hemostatic efficiency, poor biocompatibility, weak degradation ability, and lack of antimicrobial properties. Herein, an oxidized cellulose (OC) sponge with antibacterial properties and biosafety was fabricated for hemorrhage control and wound healing. The as-prepared OC sponges were prone to water triggered expansion and superabsorbent capacity, which could facilitate blood component concentration effectively. Importantly, they had significant biodegradability with little irritation to the skin. This hemostat could also reduce the plasma clotting time to 53.54% in vitro and demonstrated less blood loss than commercially available hemostatic agents (GS) in a mouse model of bleeding from liver defects. Furthermore, the biocompatibility antimicrobial properties and possible hemostatic mechanism of the OC sponge were also systematically evaluated. Importantly, the potential wound healing applications have also been demonstrated. Therefore, the materials have broad clinical application prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.