Thermoplastic polyurethane (TPU) foams are commonly used buffering materials due to their lightweight, high elasticity, and excellent energy absorption properties. Improving their compressive property without increase foam density is a challenge for TPU foams. Herein, graphene oxide (GO)/TPU composite foams containing micro‐sized wrinkles on the cell surface were fabricated by a novel dynamic supercritical carbon dioxide (scCO2) foaming method. The addition of GO created hydrogen bonding and physical crosslinking sites with the TPU molecules, which acted as nucleation agents to improve the cell density of the GO/TPU foams. With the increase of GO content, the mechanical properties of GO/TPU foams were significantly enhanced, and the wrinkled foams prepared via dynamic scCO2 foaming displayed superior compressive modulus, strength, energy absorption, and recoverability compared with the counterpart foams without wrinkly structure. The wrinkled GO/TPU foams with 0.5 wt% GO revealed higher expansion ratio, lower foam density, superior compressive property and energy absorption than both neat TPU and 1 wt% GO foams owing to the reinforcing effect of the wrinkly structure. This study is of great significance in the development of low‐density composite foams with enhanced compressive performance by wrinkly structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.