NH 3 synthesis by the electrocatalytic N 2 reduction reaction (NRR) under ambient conditions is an appealing alternative to the currently employed industrial method-the Haber-Boschp rocess-that requires high temperature and pressure.W er eport single Mo atoms anchored to nitrogendoped porous carbon as ac ost-effective catalyst for the NRR. Benefiting from the optimally high density of active sites and hierarchically porous carbon frameworks,t his catalyst achieves ah igh NH 3 yield rate (34.0 AE 3.6 mg NH 3 h À1 mg cat. À1 )a nd ahigh Faradaic efficiency (14.6 AE 1.6 %) in 0.1m KOHatroom temperature.T hese values are considerably higher compared to previously reported non-precious-metal electrocatalysts. Moreover,t his catalyst displays no obvious current drop during a5 0000 sN RR, and high activity and durability are achieved in 0.1m HCl. The findings provideapromising lead for the design of efficient and robust single-atom non-preciousmetal catalysts for the electrocatalytic NRR.
The development of highly active
and durable catalysts for electrochemical
reduction of CO2 (ERC) to CH4 in aqueous media
is an efficient and environmentally friendly solution to address global
problems in energy and sustainability. In this work, an electrocatalyst
consisting of single Zn atoms supported on microporous N-doped carbon
was designed to enable multielectron transfer for catalyzing ERC to
CH4 in 1 M KHCO3 solution. This catalyst exhibits
a high Faradaic efficiency (FE) of 85%, a partial current density
of −31.8 mA cm–2 at a potential of −1.8
V versus saturated calomel electrode, and remarkable stability, with
neither an obvious current drop nor large FE fluctuation observed
during 35 h of ERC, indicating a far superior performance than that
of dominant Cu-based catalysts for ERC to CH4. Theoretical
calculations reveal that single Zn atoms largely block CO generation
and instead facilitate the production of CH4.
Single‐atom catalysts (SACs) have exhibited high activities for the hydrogen evolution reaction (HER) electrocatalysis in acidic or alkaline media, when they are used with binders on cathodes. However, to date, no SACs have been reported for the HER electrocatalysis in neutral media. We demonstrate a potential‐cycling method to synthesize a catalyst comprising single Pt atoms on CoP‐based nanotube arrays supported by a Ni foam, termed PtSA‐NT‐NF. This binder‐free catalyst is centimeter‐scale and scalable. It is directly used as HER cathodes, whose performances at low and high current densities in phosphate buffer solutions (pH 7.2) are comparable to and better than, respectively, those of commercial Pt/C. The Pt mass activity of PtSA‐NT‐NF is 4 times of that of Pt/C, and its electrocatalytic stability is also better than that of Pt/C. This work provides a large‐scale production strategy for binder‐free Pt SAC electrodes for efficient HER in neutral media.
ZnxCo3‐xO4 nanoarrays are grown hydrothermally on Ti foils using appropriate ratios of Zn(NO3)2 and Co(NO3)2, NH4F and Co(NH2)2 in H2O together with the Ti substrate (autoclave, 120 °C, 10 h).
Electrocatalytic NO reduction reaction to generate NH 3 under ambient conditions offers an attractive alternative to the energy-extensive Haber-Bosch route; however, the challenge still lies in the development of cost-effective and high-performance electrocatalysts. Herein, nanoporous VN film is first designed as a highly selective and stable electrocatalyst for catalyzing reduction of NO to NH 3 with a maximal Faradaic efficiency of 85% and a peak yield rate of 1.05 × 10 -7 mol•cm -2 •s -1 (corresponding to 5,140.8 g•h -1 •mg cat.-1 ) at -0.6 V vs. reversible hydrogen electrode in acid medium. Meanwhile, this catalyst maintains an excellent activity with negligible current density and NH 3 yield rate decays over 40 h. Moreover, as a proof-of-concept of Zn-NO battery, it delivers a high power density of 2.0 mW•cm -2 and a large NH 3 yield rate of 0.22 × 10 -7 mol•cm -2 •s -1 (corresponding to 1,077.1 g•h -1 •mg cat.-1 ), both of which are comparable to the best-reported results. Theoretical analyses confirm that the VN surface favors the activation and hydrogenation of NO by suppressing the hydrogen evolution. This work highlights that the electrochemical NO reduction is an eco-friendly and energy-efficient strategy to produce NH 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.