A simple and ultrasensitive label-free electrochemical impedimetric aptasensor for thrombin based on the cascaded signal amplification was reported. The sandwich system of aptamer/thrombin/aptamer-functionalized Au nanoparticles (Apt-AuNPs) was fabricated as the sensing platform. The change of the interfacial feature of the electrode was characterized by electrochemical impedance analysis with the redox probe [Fe(CN)(6)](3-/4-). For improving detection sensitivity, the three-level cascaded impedimetric signal amplification was developed: (1) Apt-AuNPs as the first-level signal enhancer; (2) the steric-hindrance between the enlarged Apt-AuNPs as the second-level signal amplification; (3) the electrostatic-repulsion between sodium dodecylsulfate (SDS) stabilized Apt-AuNPs and the redox probe [Fe(CN)(6)](3-/4-) as the third-level signal amplification. Enlargement of Apt-AuNPs integrated with negatively charged surfactant (SDS) capping could not only improve the detection sensitivity of the impedimetric aptasensor for thrombin but also present a simple and general signal-amplification model for impedimetric sensor. The aptasensor based on the enlargement of negatively charged Apt-AuNPs showed an increased response of the electron-transfer resistance to the increase of thrombin concentration through a wide detection range from 100 fM to 100 nM. The linear detection range was 0.05-35 nM, and thrombin was easily detectable to a concentration of 100 fM. The aptasensor also has good selectivity and reproducibility.
An electrochemical biosensor was developed for the label-free and selective detection of leukemia cells based on aptamer-modified gold electrode using electrochemical impedance spectroscopy (EIS) technique. The thiolterminated aptamer (sgc8c) selected for CCRF-CEM acute leukemia cells was self-assembled onto the gold electrode surface as recognition probe, which was characterized by cyclic voltammetry (CV) and EIS using Fe(CN) 6 3À/4À as a redox probe. The surface density of aptamers was determined by chronocoulometric method using a redox cation of Ru(NH 3 ) 6 3þ . Upon incubation of the aptamer-modified electrode with CCRF-CEM cells, the electron-transfer resistance (R et ) of Fe(CN) 6 3À/4À on the sensor surface increased substantially. Only a small R et change of the sensor to the control negative cell line RAJI was observed, indicating the excellent selectivity of the sensor. The selective capture of CCRF-CEM cells on the sensor surface was also confirmed by fluorescence microscopy. A linear relationship between R et and the logarithmic value of CCRF-CEM cells concentration was found in the range of 1 Â 10 4 to 1 Â 10 7 cells/mL, with a detection limit of 6 Â 10 3 cells/mL. This work provided a simple, convenient, lowcost and label-free method for early leukemia diagnosis.
AS1411 (previously known as AGRO100) is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin (Dox), to AS1411 to form a synthetic Drug-DNA Adduct (DDA), termed as AS1411-Dox. We demonstrate the utility of AS1411-Dox in the treatment of hepatocellular carcinoma (HCC) by evaluating the targeted delivery of Dox to Huh7 cells in vitro and in a murine xenograft model of HCC.
Multidrug resistant among Acinetobacter baumannii infection is associated with a high mortality rate and limits the therapeutic options. The aim of this study was to assess the safety and efficacy of colistin monotherapy vs. other single antibiotic therapy AND colistin-based combination therapy (with other antibiotics) vs. colistin alone for the treatment of Acinetobacter baumannii infection. Online electronic database were searched for studies evaluating colistin with or without other antibiotics in treatment of patients with drug-resistant Acinetobacter baumannii infection. Totally, twelve studies met the inclusion criteria. For colistin-based combination therapy, six articles including 668 patients were included. Our results showed that the overall clinical response did not differ significantly between colistin-based combination therapy and monotherapy (OR = 1.37, 95% CI = 0.86–2.19, P = 0.18). This insignificance was also detected in ICU mortality, length of stay and nephrotoxicity (P > 0.05). However, the colistin-based combination therapy was shown increasing the microbiological response (OR = 2.14, 95% CI = 1.48–3.07, P < 0.0001). For colistin monotherapy, six studies involving 491 patients were analyzed. The results were in concordance with the findings of the colistin-based combination therapy group. Our results suggest that colistin may be a promising therapy as safe and efficacious as standard antibiotics for the treatment of drug-resistant Acinetobacter baumannii infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.