The type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 play critical roles in stimulating innate and adaptive immune responses required for resistance to helminth infection and promotion of allergic inflammation, metabolic homeostasis and tissue repair1–3. Group 2 innate lymphoid cells (ILC2s) are a potent source of type 2 cytokines and while significant advances have been made in understanding the cytokine milieu that promotes ILC2 responses4–9, there are fundamental gaps in knowledge regarding how ILC2 responses are regulated by other stimuli. In this report, we demonstrate that ILC2s in the gastrointestinal tract co-localize with cholinergic neurons that express the neuropeptide neuromedin U (NMU)10,11. In contrast to other hematopoietic cells, ILC2s selectively express the NMU receptor 1 (NMUR1). In vitro stimulation of ILC2s with NMU induced rapid cell activation, proliferation and secretion of type 2 cytokines IL-5, IL-9 and IL-13 that was dependent on cell-intrinsic expression of NMUR1 and Gαq protein. In vivo administration of NMU triggered potent type 2 cytokine responses characterized by ILC2 activation, proliferation and eosinophil recruitment that was associated with accelerated expulsion of the gastrointestinal nematode Nippostrongylus brasiliensis or induction of lung inflammation. Conversely, worm burden was higher in Nmur1−/− mice compared to control mice. Further, use of gene-deficient mice and adoptive cell transfer experiments revealed that ILC2s were necessary and sufficient to mount NMU-elicited type 2 cytokine responses. Together, these data indicate that the NMU-NMUR1 neuronal signaling circuit provides a selective and previously unrecognized mechanism through which the enteric nervous system and innate immune system integrate to promote rapid type 2 cytokine responses that can induce anti-microbial, inflammatory and tissue-protective type 2 responses at mucosal sites.
SUMMARY microRNAs regulate developmental cell fate decisions, tissue homeostasis and oncogenesis in distinct ways relative to proteins. Here, we show that the tumor suppressor microRNA miR-34a is a cell fate determinant in early stage dividing colon cancer stem cells (CCSCs). In pair-cell assays, miR34a distributes at high levels in differentiating progeny, while low levels of miR34a demarcate self renewing CCSCs. Moreover, miR34a loss of function and gain of function alters the balance between self-renewal and differentiation both in vitro and in vivo. Mechanistically, miR34a sequesters Notch1 mRNA to generate a sharp threshold response where a bimodal Notch signal specifies the choice between self-renewal versus differentiation. In contrast, the canonical cell fate determinant Numb regulates Notch levels in a continuously graded manner. Taken together, our findings highlight a unique microRNA regulated mechanism that converts noisy input into a toggle switch for robust cell fate decisions in CCSCs.
According to current dogma, there is little or no ongoing neurogenesis in the fully developed adult enteric nervous system. This lack of neurogenesis leaves unanswered the question of how enteric neuronal populations are maintained in adult guts, given previous reports of ongoing neuronal death. Here, we confirm that despite ongoing neuronal cell loss because of apoptosis in the myenteric ganglia of the adult small intestine, total myenteric neuronal numbers remain constant. This observed neuronal homeostasis is maintained by new neurons formed in vivo from dividing precursor cells that are located within myenteric ganglia and express both Nestin and p75NTR, but not the pan-glial marker Sox10. Mutation of the phosphatase and tensin homolog gene in this pool of adult precursors leads to an increase in enteric neuronal number, resulting in ganglioneuromatosis, modeling the corresponding disorder in humans. Taken together, our results show significant turnover and neurogenesis of adult enteric neurons and provide a paradigm for understanding the enteric nervous system in health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.