Quantum image processing (QIP) is a research branch of quantum information and quantum computing. It studies how to take advantage of quantum mechanics’ properties to represent images in a quantum computer and then, based on that image format, implement various image operations. Due to the quantum parallel computing derived from quantum state superposition and entanglement, QIP has natural advantages over classical image processing. But some related works misuse the notion of quantum superiority and mislead the research of QIP, which leads to a big controversy. In this paper, after describing this field’s research status, we list and analyze the doubts about QIP and argue “quantum image classification and recognition” would be the most significant opportunity to exhibit the real quantum superiority. We present the reasons for this judgment and dwell on the challenges for this opportunity in the era of NISQ (Noisy Intermediate-Scale Quantum).
As a form of artificial intelligence, artificial neural networks (ANNs) have the advantages of adaptability, parallel processing capabilities, and non-linear processing. They have been widely used in the early detection and diagnosis of tumors. In this article, we introduce the development, working principle, and characteristics of ANNs and review the research progress on the application of ANNs in the detection and diagnosis of gastrointestinal and liver tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.