c Nephrotoxicity is the dose-limiting factor for colistin, but the exact mechanism is unknown. This study aimed to investigate the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in colistin-induced nephrotoxicity. Mice were intravenously administered 7.5 or 15 mg of colistin/kg of body weight/day (via a 3-min infusion and divided into two doses) for 7 days. Renal function, oxidative stress, and apoptosis were measured. Representative biomarkers involved in the mitochondrial, death receptor, and endoplasmic reticulum pathways were investigated, and the key markers involved in apoptosis and autophagy were examined. After 7-day colistin treatment, significant increase was observed with blood urea nitrogen, serum creatinine, and malondialdehyde, while activities of superoxide dismutase (SOD) and catalase decreased in the kidneys. Acute tubular necrosis and mitochondrial dysfunction were detected, and colistin-induced apoptosis was characterized by DNA fragmentation, cleavage of poly(ADP-ribose) polymerase (PARP-1), increase of 8-hydroxydeoxyguanosine (8-OHdG), and activation of caspases (caspase-8, -9, and -3). It was evident that colistin-induced apoptosis involved the mitochondrial pathway (downregulation of Bcl-2 and upregulation of cytochrome C [cytC] and Bax), death receptor pathway (upregulation of Fas, FasL, and Fasassociated death domain [FADD]), and endoplasmic reticulum pathway (upregulation of Grp78/Bip, ATF6, GADD153/CHOP, and caspase-12). In the 15-mg/kg/day colistin group, expression of the cyclin-dependent kinase 2 (CDK2) and phosphorylated JNK (p-JNK) significantly increased (P < 0.05), while in the 7.5-mg/kg/day colistin group, a large number of autophagolysosomes and classic autophagy were observed. Western blot results of Beclin-1 and LC3B indicated that autophagy may play a protective role in colistin-induced nephrotoxicity. In conclusion, this is the first study to demonstrate that all three major apoptosis pathways and autophagy are involved in colistin-induced nephrotoxicity.
Glutamate in excessive amounts is a major contributor to neuronal degeneration, and its removal is attributed mainly to astrocytes. Traumatic injury to the central nervous system (CNS) is often accompanied by disappearance of astrocytes from the lesion site and failure of the remaining cells to withstand the ensuing toxicity. Microglia that repopulate the lesion site are the usual suspects for causing redox imbalance and inflammation and thus further exacerbating the neurotoxicity. However, our group recently demonstrated that early post-injury activation of microglia as antigen-presenting cells correlates with an ability to withstand injurious conditions. Moreover, we found that T cells reactive to CNS-specific selfantigens protected neurons against glutamate toxicity. Here, we show that antigen-specific autoimmune T cells, by tailoring the microglial phenotype, can increase the ability of microgliaenriched cultures to remove glutamate. This T-cell-mediated effect could not be achieved by the potent microglia-activating agent lipopolysaccharide (LPS), but was dose-dependently reproduced by the Th1 cytokine interferon (IFN)-c and significantly reduced by neutralizing anti-IFN-c antibodies. Under the same conditions, IFN-c had no effect on cultured astrocytes. Up-regulation of glutamate uptake induced by IFN-c activation was not accompanied by the acute inflammatory response seen in LPS-activated cultures. These findings suggest that T cells or their cytokines can cause microglia to adopt a phenotype that facilitates rather than impairs glutamate clearance, possibly contributing to restoration of homeostasis.
This is the first study to investigate the hepatoprotective effect of CQ on acute liver injury caused by carbon tetrachloride (CCl4) in a murine model and the underlying molecular mechanisms. Ninety-six mice were randomly divided into the control (n = 8), CQ (n = 8), CCl4 (n = 40), and CCl4 + CQ (n = 40) treatment groups. In the CCl4 group, mice were intraperitoneally (i.p) injected with 0.3% CCl4 (10 mL/kg, dissolved in olive oil); in the CCl4 + CQ group, mice were i.p injected with CQ at 50 mg/kg at 2, 24, and 48 h before CCl4 administration. The mice in the control and CQ groups were administered with an equal vehicle or CQ (50 mg/kg). Mice were killed at 2, 6, 12, 24, 48 h post CCl4 treatment and their livers were harvested for analysis. The results showed that CQ pre-treatment markedly inhibited CCl4-induced acute liver injury, which was evidenced by decreased serum transaminase, aspartate transaminase and lower histological scores of liver injury. CQ pretreatment downregulated the CCl4-induced hepatic tissue expression of high-mobility group box 1 (HMGB1) and the levels of serum HMGB1 as well as IL-6 and TNF-α. Furthermore, CQ pre-treatment inhibited autophagy, downregulated NF-kB expression, upregulated p53 expression, increased the ratio of Bax/Bcl-2, and increased the activation of caspase-3 in hepatic tissue. This is the first study to demonstrate that CQ ameliorates CCl4-induced acute liver injury via the inhibition of HMGB1-mediated inflammatory responses and the stimulation of pro-apoptotic pathways to modulate the apoptotic and inflammatory responses associated with progress of liver damage.
bNephrotoxicity is the major dose-limiting factor for the clinical use of colistin against multidrug-resistant (MDR) Gram-negative bacteria. This study aimed to investigate the protective effect of lycopene on colistin-induced nephrotoxicity in a mouse model. Fifty mice were randomly divided into 5 groups: the control group (saline solution), the lycopene group (20 mg/kg of body weight/day administered orally), the colistin group (15 mg/kg/day administered intravenously), the colistin (15 mg/kg/day) plus lycopene (5 mg/kg/day) group, and the colistin (15 mg/kg/day) plus lycopene (20 mg/kg/day) group; all mice were treated for 7 days. At 12 h after the last dose, blood was collected for measurements of blood urea nitrogen (BUN) and serum creatinine levels. The kidney tissue samples were obtained for examination of biomarkers of oxidative stress and apoptosis, histopathological assessment, and quantitative reverse transcription-PCR (qRT-PCR) analysis. Colistin treatment significantly increased concentrations of BUN and serum creatinine, tubular apoptosis/necrosis, lipid peroxidation, and heme oxygenase 1 (HO-1) activity, while the treatment decreased the levels of endogenous antioxidant biomarkers glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Notably, the changes in the levels of all biomarkers were attenuated in the kidneys of mice treated with colistin by lycopene (5 or 20 mg/kg). Lycopene treatment, especially in the colistin plus lycopene (20 mg/kg) group, significantly downregulated the expression of NF-B mRNA (P < 0.01) but upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both P < 0.01) in the kidney compared with the results seen with the colistin group. Our data demonstrated that coadministration of 20 mg/kg/day lycopene can protect against colistin-induced nephrotoxicity in mice. This effect may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.