Chromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.
Chitosan is a typical hydrophilic biomass building block widely used in material science and engineering. However, its intrinsic amphiphilicity has been seldom noted so far. Herein, a series of glutaraldehyde-crosslinked chitosan cryogels with superamphiphilicity are fabricated at moderately frozen conditions through a freezing−thawing process. The micron-sized porous cryogel samples display a 0°contact angle toward both water and oil, 0°water contact angle under oil, and over 120°oil contact angle underwater. By comparing the wetting behavior of the tablet compressed by pure chitosan powders, the superamphiphilicity of the chitosan sample is proven to be independent on crosslinkers. This special wettability endows the chitosan cryogels with high separation efficiency for various surfactant-stabilized oil-in-water emulsions under continuous flow mode driven by gravity as well as a peristaltic pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.