Shigatoxigenic Escherichia coli (STEC) strains are worldwide zoonotic pathogen responsible for different cases of human disease including hemolytic uremic syndrome (HUS). Transmission of STEC to humans occurs through the consumption of food and water contaminated by faeces of carriers and by person-to-person contact. The objective of this study was two-fold: (1) to investigate whether synanthropic rodents are possible reservoirs of STEC in the urban area and (2) whether a particular genus out of synanthropic rodent is the principal carrier of STEC. One hundred and forty-five rodents were captured in Buenos Aires City. Screening for stx1/stx2 and rfbO157 was done by PCR from the confluence zone. STEC isolates were further characterized with biochemical tests by standard methods. Additional virulence factors (eae, ehxA, and saa) were also determined by PCR. Forty-one of the rodents were necropsied and sample of kidney and small and large intestine were taken for histopathological diagnosis. The samples sections were stained with hematoxylin-eosin, and observed by light microscopy to evaluate the systemic involvement of these species in natural infections. STEC was isolated from seven out of 27 suspect animals at screening. The following genotypes were found in the STEC strains: stx1/stx2/ehxA (1), stx2 (4), stx2/ehxA (1), stx2/ehxA/eae (1). Neither gross nor microscopic lesions compatible with those produced by Shiga toxin were observed in the studied organs of necropsied rodents. The bivariate analysis including the 145 rodent's data showed that the isolation of STEC is associated positively to Rattus genus. This synanthropic species may play a role in the transmissibility of the agent thus being a risk to the susceptible population. Their control should be included specifically in actions to dismiss the contamination of food and water by STEC in the urban area, as additional strategies for epidemiological control.
Enteropathogenic Escherichia coli (EPEC) and Shiga toxin-producing E. coli (STEC) are pathovars of E. coli that impact human health by causing childhood diseases. In this work, 118 synanthropic rodents of the genus Rattus from Buenos Aires, Argentina were evaluated as EPEC and STEC carriers. Rectal swab samples from captured animals were evaluated by conventional PCR to detect the presence of the eae, stx1, stx2, and rfbO157 genes. Twenty-one isolates were obtained (17 EPEC isolates from seven animals and four STEC isolates from the same animal). All EPEC isolates tested negative for the presence of the bfpA gene. One EPEC isolate carried the iha gene, and five EPEC isolates carried the toxB gene. STEC isolates exhibited two different virulence profiles: stx1a/stx2a/stx2c/stx2d/saa/ehxA/subA (3/4) and stx1a/stx2a/saa/ehxA/subA (1/4). EPEC isolate serotypes included O109:H46 (7), O71:H40 (4), O71:NM (2), O138:H40 (1), O108:H21 (1), O88:H25 (1), and O76:NM (1), and STEC isolates belonged to the O108:H11 (4) serotype. Antimicrobial susceptibility testing was carried out, and resistance to tetracycline was observed in one EPEC strain. Our results demonstrate that Rattus spp. may act as carriers of EPEC and STEC strains and may be involved in the epidemiology of diarrheal disease in infancy.
Diarrheagenic Escherichia coli (DEC) pathovars impact childhood health. The southern region of Argentina shows the highest incidence of hemolytic uremic syndrome (HUS) in children of the country. The big island of Tierra del Fuego (TDF) in Argentina registered an incidence of five cases/100,000 inhabitants of HUS in 2019. This work aimed to establish the prevalence of STEC, EPEC, and EAEC in lambs slaughtered in abattoirs from TDF as well as to characterize the phenotypes and the genotypes of the isolated pathogens. The prevalence was 26.6% for stx+, 5.7% for eae+, and 0.27% for aagR+/aaiC+. Twelve STEC isolates were obtained and belonged to the following serotypes: O70:HNT, O81:H21, O81:HNT, O102:H6, O128ab:H2, O174:H8, and O174:HNT. Their genotypic profiles were stx1c (2), stx1c/ehxA (3), stx2b/ehxA (1), stx1c/stx2b (2), and stx1c/stx2/ehxA (4). Six EPEC isolates were obtained and corresponded to five serotypes: O2:H40, O32:H8, O56:H6, O108:H21, and O177:H25. All the EPEC isolates were bfpA- and two were ehxA+. By XbaI-PFGE of 17 isolates, two clusters were identified. By antimicrobial susceptibility tests, 8/12 STEC and 5/6 EPEC were resistant to at least one antibiotic. This work provides new data to understand the ecology of DEC in TDF and confirms that ovine are an important carrier of these pathogens in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.