Background: Lactate protects mice against the ischaemic damage resulting from transient middle cerebral artery occlusion (MCAO) when administered intracerebroventricularly at reperfusion, yielding smaller lesion sizes and a better neurological outcome 48 h after ischaemia. We have now tested whether the beneficial effect of lactate is long-lasting and if lactate can be administered intravenously. Methods: Male ICR-CD1 mice were subjected to 15-min suture MCAO under xylazine + ketamine anaesthesia. Na
Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.
Castillo et al. Neurodegeneration Revisited cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Monocarboxylate transporters (MCTs) are involved in lactate trafficking and utilization by brain cells. As lactate is not only overproduced during ischemia but its utilization was shown to be essential upon recovery, we analyzed the expression of the main cerebral MCTs at 1 and 24h after an ischemic insult induced by a transient occlusion of the left middle cerebral artery (MCAO) in CD1 mice (n=5, 7 and 10 for control, 1 and 24h groups, respectively). After 1h of reperfusion, an upregulation of the three MCTs was observed in the striatum (MCT1 ipsilateral 2.73 ± 0.2 and contralateral 2.01 ± 0.4; MCT2 ipsilateral 2.1 ± 0.1; MCT4 ipsilateral 1.65 ± 0.1) and in the surrounding cortex of both the ipsilateral (MCT1 2.4 ± 0.4; MCT2 1.62 ± 0.2; MCT4 1.31 ± 0.1) and contralateral (MCT1 2.78 ± 0.4; MCT2 1.76 ± 0.2) hemispheres, compared to the corresponding sham hemispheres. An increase of MCT1 (ipsilateral 2.1 ± 0.2) and MCT2 (contralateral 1.9 ± 0.1) expression was also observed in the hippocampus, while no effect was observed for MCT4. At 24h of reperfusion, total MCT2 and MCT4 expressions were decreased in the striatum (MCT2 ipsilateral 0.32 ± 0.1 and contralateral 0.63 ± 0.1; MCT4 ipsilateral 0.59 ± 0.1) and the surrounding cortex (MCT4 ipsilateral 0.67 ± 0.1), compared to the sham. At the cellular level, neurons which usually express only MCT2 strongly expressed MCT1 at both time points. Surprisingly, staining for MCT4 appeared on neurons and was strong at 24h post-insult, in the striatum and the cortex of both hemispheres. A similar expression pattern was observed also in the ipsilateral hemisphere of the sham operated animals at 24h. Overall, our study indicates that cell-specific changes in MCT expression induced by an ischemic insult may participate to the metabolic adaptations taking place in the brain after a transient ischemic episode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.