The DUF642 protein family is found exclusively in spermatophytes and is represented by 10 genes in Arabidopsis and in most of the 24 plant species analyzed to date. Even though the primary structure of DUF642 proteins is highly conserved in different spermatophyte species, studies of their expression patterns in Arabidopsis have shown that the spatial-temporal expression pattern for each gene is specific and consistent with the phenotypes of the mutant plants studied so far. Additionally, the regulation of DUF642 gene expression by hormones and environmental stimuli was specific for each gene, showing both up- and down-regulation depending of the analyzed tissue and the intensity or duration of the stimuli. These expression patterns suggest that the DUF642 genes are involved throughout the development and growth of plants. In general, changes in the expression patterns of DUF642 genes can be related to changes in pectin methyl esterase activity and/or to changes in the degree of methyl-esterified homogalacturonans during plant development in different cell types. Thus, the regulation of pectin methyl esterases mediated by DUF642 genes could contribute to the regulation of the cell wall properties during plant growth.
The species of the genus Ceiba produces fruits with fibers with a high content of cellulose. The fiber is used for textiles, cushion filling and for industrial purposes and its characteristics have been studied in some species including Ceiba pentandra (kapok), C. speciosa and C. aesculifolia. The use of the trunk and seeds of Ceiba has also been described for different species. This article presents a review on the biological diversity of the genus Ceiba (Malvaceae). The genus Ceiba has 18 recognized species that are distributed naturally in America and Africa. However, some Ceiba trees have been introduced to various countries, especially in Asia, due to their ornamental interest and potential uses for their fiber. Ecophysiological studies of different Ceiba species have shown that resistance to adverse environmental conditions varies from species to species. Therefore, Ceiba species are considered potentially useful in restoring ecosystems impacted by human activity. The information related to the classification, morphological characteristics, phenology, ecophysiology and distribution of the different species will be extremely relevant for the sustainable production of kapok fiber. Finally, the recent genomic and transcriptomic studies also provide a valuable resource for further genetic improvement and effective use of Ceiba trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.