In this paper, we discuss regression analysis of bivariate interval-censored failure time data that often occur in biomedical and epidemiological studies. To solve this problem, we propose a kind of general and flexible copula-based semiparametric partly linear additive hazards models that can allow for both time-dependent covariates and possible nonlinear effects. For inference, a sieve maximum likelihood estimation approach based on Bernstein polynomials is proposed to estimate the baseline hazard functions and nonlinear covariate effects. The resulting estimators of regression parameters are shown to be consistent, asymptotically efficient and normal. A simulation study is conducted to assess the finite-sample performance of this method and the results show that it is effective in practice. Moreover, an illustration is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.