The low gas permeability of coal formations with limited coal pores and fractures leads to difficulty in coalbed methane exploration. High-voltage electrical pulse has a potential application in enhanced coalbed methane recovery. In this study, we discuss the microscopic characteristics of anthracite coals treated by high-voltage electrical pulse. We find that C, O, and other coal elements constituting oxygenic groups, which mainly account for gas adsorption, decreased slightly after high-voltage electrical pulse treatment, indicating that elemental variation may have little influence on gas adsorption. The scanning electron microscopy and low-pressure nitrogen gas adsorption (LP-N 2 GA) results show that the cumulative micropore volumes of highvoltage electrical pulse-treated coals were much larger than those of original coals. The mercury intrusion porosimetry results show that the cumulative macropore volumes, which act as gas migration channels in coal increased. Additionally, high-voltage electrical pulse-treated coals were found to have smaller entrapment areas, indicating that gas migration was enhanced.
The surrounding rock of roadways in underground coal mines will lose its stability or even collapse under gas explosions, especially roadways surrounded by coals. The dynamic mechanical properties of coals were tested in order to investigate the dynamic response of coals under gas explosions. The static mechanical properties of coals were also tested as comparison. It is found that the dynamic stress-strain curves showed no obvious pore compaction stage comparing with uniaxial loading. The dynamic compression strength and the elastic modulus are obviously larger than those obtained in the static mechanical properties test, and the dynamic strain shows an obvious hysteresis phenomenon. The ultimate strain and absorbed energy increased linearly with increase of the strain rate. With the increase of dynamic loading, the fragment size of coal cores decreased obviously. The results could provide a reference for the antiexplosion design of the coal roadway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.