Living organisms exhibit unique homeostatic abilities, maintaining tight control of their local environment through inter-conversions of chemical and mechanical energy and selfregulating feedback loops organized hierarchically across many length scales 1-7 . In contrast, most synthetic materials are incapable of undergoing continuous self-monitoring and self-regulating behavior due to their limited single-directional chemo-mechanical 7-12 or mechano-chemical 13, 14 modes. Applying the concept of homeostasis to the design of autonomous materials 15 would have transformative impacts in areas ranging from medical implants that help stabilize bodily functions to smart materials that regulate energy usage 2, 16, 17 . Here we present a versatile strategy for creating self-regulating, self-powered, homeostatic materials capable of precisely tailored chemo-mechano-chemical feedback loops at the nano/microscale. We design a bilayer system with hydrogel-supported, catalyst-bearing microstructures, which are separated from a reactant-containing "nutrient" layer. Reconfiguration of the gel in response to a stimulus induces the reversible actuation of the microstructures in and out of the nutrient layer and serves as a highly precise "on/off" switch for chemical reactions. We apply this design to trigger organic, inorganic and biochemical reactions that undergo reversible, repeatable cycles synchronized with the motion of the microstructures and the driving external chemical stimulus. By exploiting a continuous feedback loop between various exothermic catalytic reactions in the nutrient layer and the mechanical action of the temperature-responsive gel, we then create exemplary autonomous, self-sustained homeostatic systems that maintain a user-defined parameter-temperature-in a narrow range. The experimental results were validated using computational modeling that qualitatively captured the essential features of the self-regulating behavior and provided additional criteria for the optimization of the homeostatic function, subsequently confirmed experimentally. This design is highly customizable due to the broad choice of chemistries, tunable mechanics, and physical simplicity, thus promising exciting applications in autonomous systems with chemomechano-chemical transduction at their core.The survival of organisms relies on homeostatic functions such as the maintenance of stable body temperature, blood pressure, pH, and sugar levels 1,3,[5][6][7] . This remarkable self-
Hydrogels, exhibiting wide applications in soft robotics, tissue engineering, implantable electronics, etc., often require sophisticately tailoring of the hydrogel mechanical properties to meet specific demands. For examples, soft robotics necessitates tough hydrogels; stem cell culturing demands various tissue‐matching modulus; and neuron probes desire dynamically tunable modulus. Herein, a strategy to broadly alter the mechanical properties of hydrogels reversibly via tuning the aggregation states of the polymer chains by ions based on the Hofmeister effect is reported. An ultratough poly(vinyl alcohol) (PVA) hydrogel as an exemplary material (toughness 150 ± 20 MJ m−3), which surpasses synthetic polymers like poly(dimethylsiloxane), synthetic rubber, and natural spider silk is fabricated. With various ions, the hydrogel's various mechanical properties are continuously and reversibly in situ modulated over a large window: tensile strength from 50 ± 9 kPa to 15 ± 1 MPa, toughness from 0.0167 ± 0.003 to 150 ± 20 MJ m−3, elongation from 300 ± 100% to 2100 ± 300%, and modulus from 24 ± 2 to 2500 ± 140 kPa. Importantly, the ions serve as gelation triggers and property modulators only, not necessarily required to remain in the gel, maintaining the high biocompatibility of PVA without excess ions. This strategy, enabling high mechanical performance and broad dynamic tunability, presents a universal platform for broad applications from biomedicine to wearable electronics.
Oscillations are widely found in living organisms to generate propulsion-based locomotion often driven by constant ambient conditions, such as phototactic movements. Such environment-powered and environment-directed locomotions may advance fully autonomous remotely steered robots. However, most man-made oscillations require nonconstant energy input and cannot perform environment-dictated movement. Here, we report a self-sustained soft oscillator that exhibits perpetual and untethered locomotion as a phototactic soft swimming robot, remotely fueled and steered by constant visible light. This particular out-of-equilibrium actuation arises from a self-shadowing–enabled negative feedback loop inherent in the dynamic light–material interactions, promoted by the fast and substantial volume change of the photoresponsive hydrogel. Our analytical model and governing equation unveil the oscillation mechanism and design principle with key parameters identified to tune the dynamics. On this autonomous oscillator platform, we establish a broadly applicable principle for converting a continuous input into a discontinuous output. The modular design can be customized to accommodate various forms of input energy and to generate diverse oscillatory behaviors. The hydrogel oscillator showcases agile life-like omnidirectional motion in the entire three-dimensional space with near-infinite degrees of freedom. The large force generated by the powerful and long-lasting oscillation can sufficiently overcome water damping and effectively self-propel away from a light source. Such a hydrogel oscillator–based all-soft swimming robot, named OsciBot, demonstrated high-speed and controllable phototactic locomotion. This autonomous robot is battery free, deployable, scalable, and integratable. Artificial phototaxis opens broad opportunities in maneuverable marine automated systems, miniaturized transportation, and solar sails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.